Analysis of the Planetary Boundary Layer Height during DISCOVER-AQ Baltimore–Washington, D.C., with Lidar and High-Resolution WRF Modeling

Jennifer D. Hegarty Atmospheric and Environmental Research, Lexington, Massachusetts

Search for other papers by Jennifer D. Hegarty in
Current site
Google Scholar
PubMed
Close
,
Jasper Lewis NASA Goddard Space Flight Center, Greenbelt, Maryland
University of Maryland Baltimore County, Baltimore, Maryland

Search for other papers by Jasper Lewis in
Current site
Google Scholar
PubMed
Close
,
Erica L. McGrath-Spangler NASA Goddard Space Flight Center, Greenbelt, Maryland
Universities Space Research Association, Goddard Earth Sciences Technology and Research, Columbia, Maryland

Search for other papers by Erica L. McGrath-Spangler in
Current site
Google Scholar
PubMed
Close
,
John Henderson Atmospheric and Environmental Research, Lexington, Massachusetts

Search for other papers by John Henderson in
Current site
Google Scholar
PubMed
Close
,
Amy Jo Scarino NASA Langley Research Center, Hampton, Virginia
Science Systems and Applications, Inc., Hampton, Virginia

Search for other papers by Amy Jo Scarino in
Current site
Google Scholar
PubMed
Close
,
Philip DeCola Sigma Space Corporation, Lanham, Maryland
Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, College Park, Maryland

Search for other papers by Philip DeCola in
Current site
Google Scholar
PubMed
Close
,
Richard Ferrare NASA Langley Research Center, Hampton, Virginia

Search for other papers by Richard Ferrare in
Current site
Google Scholar
PubMed
Close
,
Micheal Hicks NOAA/National Weather Service, Falls Church, Virginia

Search for other papers by Micheal Hicks in
Current site
Google Scholar
PubMed
Close
,
Rebecca D. Adams-Selin Atmospheric and Environmental Research, Offut Air Force Base, Nebraska

Search for other papers by Rebecca D. Adams-Selin in
Current site
Google Scholar
PubMed
Close
, and
Ellsworth J. Welton NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Ellsworth J. Welton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The daytime planetary boundary layer (PBL) was examined for the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Baltimore (Maryland)–Washington, D.C., campaign of July 2011 using PBL height (PBLH) retrievals from aerosol backscatter measurements from ground-based micropulse lidar (MPL), the NASA Langley Research Center airborne High Spectral Resolution Lidar-1 (HSRL-1), and the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. High-resolution Weather Research and Forecasting (WRF) Model simulations with horizontal grid spacing of 1 km and different combinations of PBL schemes, urban parameterization, and sea surface temperature inputs were evaluated against PBLHs derived from lidars, ozonesondes, and radiosondes. MPL and WRF PBLHs depicted a growing PBL in the morning that reached a peak height by midafternoon. WRF PBLHs calculated from gridded output profiles generally showed more rapid growth and higher peak heights than did the MPLs, and all WRF–lidar differences were dependent on model configuration, PBLH calculation method, and synoptic conditions. At inland locations, WRF simulated an earlier descent of the PBL top in the afternoon relative to the MPL retrievals and radiosonde PBLHs. At Edgewood, Maryland, the influence of the Chesapeake Bay breeze on the PBLH was captured by both the ozonesonde and WRF data but generally not by the MPL PBLH retrievals because of generally weaker gradients in the aerosol backscatter profile and limited normalized relative backscatter data near the top height of the marine layer.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jennifer D. Hegarty, jhegarty@aer.com

Abstract

The daytime planetary boundary layer (PBL) was examined for the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Baltimore (Maryland)–Washington, D.C., campaign of July 2011 using PBL height (PBLH) retrievals from aerosol backscatter measurements from ground-based micropulse lidar (MPL), the NASA Langley Research Center airborne High Spectral Resolution Lidar-1 (HSRL-1), and the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. High-resolution Weather Research and Forecasting (WRF) Model simulations with horizontal grid spacing of 1 km and different combinations of PBL schemes, urban parameterization, and sea surface temperature inputs were evaluated against PBLHs derived from lidars, ozonesondes, and radiosondes. MPL and WRF PBLHs depicted a growing PBL in the morning that reached a peak height by midafternoon. WRF PBLHs calculated from gridded output profiles generally showed more rapid growth and higher peak heights than did the MPLs, and all WRF–lidar differences were dependent on model configuration, PBLH calculation method, and synoptic conditions. At inland locations, WRF simulated an earlier descent of the PBL top in the afternoon relative to the MPL retrievals and radiosonde PBLHs. At Edgewood, Maryland, the influence of the Chesapeake Bay breeze on the PBLH was captured by both the ozonesonde and WRF data but generally not by the MPL PBLH retrievals because of generally weaker gradients in the aerosol backscatter profile and limited normalized relative backscatter data near the top height of the marine layer.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jennifer D. Hegarty, jhegarty@aer.com
Save
  • Angevine, W. M., A. B. White, C. J. Senff, M. Trainer, R. M. Banta, and M. A. Ayoub, 2003: Urban–rural contrasts in mixing height and cloudiness over Nashville in 1999. J. Geophys. Res., 108, 4092, https://doi.org/10.1029/2001JD001061.

    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., L. Eddington, K. Durkee, C. Fairall, L. Bianco, and J. Brioude, 2012: Meteorological model evaluation for CalNex 2010. Mon. Wea. Rev., 140, 38853906, https://doi.org/10.1175/MWR-D-12-00042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, K. R., C. Misenis, M. D. Obland, R. A. Ferrare, A. J. Scarino, and J. T. Kelly, 2013: Evaluation of surface and upper air fine scale WRF meteorological modeling of the May and June 2010 CalNex period in California. Atmos. Environ., 80, 299309, https://doi.org/10.1016/j.atmosenv.2013.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banks, R. F., J. Tiana-Alsina, F. Rocadenbosch, and J. M. Baldasano, 2015: Performance evaluation of the boundary-layer height from lidar and the Weather Research and Forecasting Model at an urban coastal site in the north-east Iberian Peninsula. Bound.-Layer Meteor., 157, 265292, https://doi.org/10.1007/s10546-015-0056-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banks, R. F., J. Tiana-Alsina, J. M. Baldasano, F. Rocadenbosch, A. Papayannis, S. Solomos, and C. G. Tzanis, 2016: Sensitivity of boundary-layer variables to PBL schemes in the WRF Model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign. Atmos. Res., 176, 185201, https://doi.org/10.1016/j.atmosres.2016.02.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., and Coauthors, 1998: Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode. J. Geophys. Res., 103, 22 51922 544, https://doi.org/10.1029/98JD01020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berman, S., J.-Y. Ku, and S.-T. Rao, 1999: Spatial and temporal variation in the mixing depth over the northeastern United States during the summer of 1995. J. Appl. Meteor., 38, 16611673, https://doi.org/10.1175/1520-0450(1999)038<1661:SATVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bianco, L., and J. M. Wilczak, 2002: Convective boundary layer depth: Improved measurements by Doppler radar wind profiler using fuzzy logic methods. J. Atmos. Oceanic Technol., 19, 17451758, https://doi.org/10.1175/1520-0426(2002)019<1745:CBLDIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohnenstengel, S. I., and Coauthors, 2015: Meteorology, air quality, and health in London: The Clearflo Project. Bull. Amer. Meteor. Soc., 96, 779804, https://doi.org/10.1175/BAMS-D-12-00245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, I. M., 2003: Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles. J. Atmos. Oceanic Technol., 20, 10921105, https://doi.org/10.1175/1520-0426(2003)020<1092:FBLTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and Coauthors, 2007: The Convective Storm Initiation Project. Bull. Amer. Meteor. Soc., 88, 19391955, https://doi.org/10.1175/BAMS-88-12-1939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burton, S. P., and Coauthors, 2010: Using airborne high spectral resolution lidar data to evaluate combined active plus passive retrievals of aerosol extinction profiles. J. Geophys. Res., 115, D00H15, https://doi.org/10.1029/2009JD012130.

    • Search Google Scholar
    • Export Citation
  • Canny, J., 1986: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell., 8, 679698, https://doi.org/10.1109/TPAMI.1986.4767851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., S. Miao, M. Tewari, J.-W. Bao, and H. Kusaka, 2011a: A numerical study of interactions between surface forcing and sea breeze circulations and their effects on stagnation in the greater Houston area. J. Geophys. Res., 116, D12105, https://doi.org/10.1029/2010JD015533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2011b: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273288, https://doi.org/10.1002/joc.2158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chin, T. M., J. Vazquez, and E. Armstrong, 2013: A multi-scale, high-resolution analysis of global sea surface temperature, version 1.3. NASA Jet Propulsion Laboratory Algorithm Theoretical Basis Doc. 13 pp., ftp://mariana.jpl.nasa.gov/mur_sst/tmchin/docs/ATBD/old/atbd_1.3.pdf.

  • Cordero, L., N. Malakar, Y. Wu, B. Gross, and F. Moshary, 2013: Assessing surface PM2.5 estimates using data fusion of active and passive remote sensing methods. Br. J. Environ. Climate Change, 3, 547565, https://doi.org/10.9734/BJECC/2013/7668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, K. J., D. H. Lenschow, S. P. Oncley, C. Kiemle, G. Ehret, A. Giez, and J. Mann, 1997: Role of entrainment in surface-atmosphere interactions over the boreal forest. J. Geophys. Res., 102, 29 21929 230, https://doi.org/10.1029/97JD02236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, K. J., N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, and P. P. Sullivan, 2000: An objective method for deriving atmospheric structure from airborne lidar observations. J. Atmos. Oceanic Technol., 17, 14551468, https://doi.org/10.1175/1520-0426(2000)017<1455:AOMFDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fast, J. D., W. I. Gustafson Jr., E. G. Chapman, R. C. Easter, J. Rishel, R. A. Zaveri, G. Grell, and M. Barth, 2011: The Aerosol Modeling Testbed: A community tool to objectively evaluate aerosol process modules. Bull. Amer. Meteor. Soc., 92, 343360, https://doi.org/10.1175/2010BAMS2868.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, S., and Coauthors, 2016: Los Angeles megacity: A high-resolution land–atmosphere modelling system for urban CO2 emissions. Atmos. Chem. Phys., 16, 90199045, https://doi.org/10.5194/acp-16-9019-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flamant, C., J. Pelon, P. H. Flamant, and P. Durand, 1997: Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer. Bound.-Layer Meteor., 83, 247284, https://doi.org/10.1023/A:1000258318944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaza, R. S., 1998: Mesoscale meteorology and high ozone in the northeastern United States. J. Appl. Meteor., 37, 961977, https://doi.org/10.1175/1520-0450(1998)037<0961:MMAHOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerbig, C., S. Korner, and J. C. Lin, 2008: Vertical mixing in atmospheric tracer transport models: Error characterization and propagation. Atmos. Chem. Phys., 8, 591602, https://doi.org/10.5194/acp-8-591-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabon, J. S., K. J. Davis, C. Kiemle, and G. Ehret, 2010: Airborne lidar observations of the transition zone between the convective boundary layer and free atmosphere during the International H2O Project (IHOP) in 2002. Bound.-Layer Meteor., 134, 6183, https://doi.org/10.1007/s10546-009-9431-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hair, J. W., and Coauthors, 2008: Airborne High Spectral Resolution Lidar for profiling aerosol optical properties. Appl. Opt., 47, 67346752, https://doi.org/10.1364/AO.47.006734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayden, K. L., and Coauthors, 1997: The vertical chemical and meteorological structure of the boundary layer in the Lower Fraser Valley during Pacific ’93. Atmos. Environ., 31, 20892105, https://doi.org/10.1016/S1352-2310(96)00300-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heffter, J. L., 1980: Transport layer depth calculations. Proc. Second Joint Conf. on Applications of Air Pollution Meteorology and Second Conf. on Industrial Meteorology, New Orleans, LA, Amer. Meteor Soc., 787–791.

  • Hegarty, J., H. Mao, and R. Talbot, 2007: Synoptic controls on summertime surface ozone in the northeastern United States. J. Geophys. Res., 112, D14306, https://doi.org/10.1029/2006JD008170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., and B. Ackerman, 1984: Urban effects on the convective boundary layer. J. Atmos. Sci., 41, 7691, https://doi.org/10.1175/1520-0469(1984)041<0076:UEOTCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogrefe, C., and Coauthors, 2004: Simulating regional-scale ozone climatology over the eastern United States: Model evaluation results. Atmos. Environ., 38, 26272638, https://doi.org/10.1016/j.atmosenv.2004.02.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holzworth, G. C., 1964: Estimates of mean maximum mixing depths in the contiguous United States. Mon. Wea. Rev., 92, 235242, https://doi.org/10.1175/1520-0493(1964)092<0235:EOMMMD>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous layer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2001: Nonsingular Implementation of the Mellor-Yamada level 2.5 Scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp., https://repository.library.noaa.gov/view/noaa/11409/noaa_11409_DS1.pdf.

  • Jordan, N. S., R. M. Hoff, and J. T. Bacmeister, 2010: Validation of Goddard Earth Observing System-version 5 MERRA planetary boundary layer heights using CALIPSO. J. Geophys. Res., 115, D24218, https://doi.org/10.1029/2009JD013777.

    • Search Google Scholar
    • Export Citation
  • Kiemle, C., G. Ehret, A. Giez, K. J. Davis, D. H. Lenschow, and S. P. Oncley, 1997: Estimation of boundary layer humidity fluxes and statistics from airborne differential absorption lidar (DIAL). J. Geophys. Res., 102, 29 18929 203, https://doi.org/10.1029/97JD01112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klir, G. J., and B. Yuan, 1997: Fuzzy Set Theory Foundations and Applications. Prentice Hall, 245 pp.

  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358, https://doi.org/10.1023/A:1019207923078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., M. Tewari, F. Chen, and J. Dudhia, 2013: Objectively determined fair-weather CBL depths in the ARW-WRF model and their comparison to CASES-97 observations. Mon. Wea. Rev., 141, 3054, https://doi.org/10.1175/MWR-D-12-00106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, J. R., R. J. DeYoung, R. A. Ferrare, and A. Chu, 2010: Comparison of summer and winter California Central Valley aerosol distributions from lidar and MODIS measurements. Atmos. Environ., 44, 45104520, https://doi.org/10.1016/j.atmosenv.2010.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, J. R., E. J. Welton, A. M. Molod, and E. Joseph, 2013: Improved boundary layer depth retrievals from MPLNET. J. Geophys. Res. Atmos., 118, 98709879, https://doi.org/10.1002/jgrd.50570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J. C., C. Gerbig, S. C. Wofsy, A. E. Andrews, B. C. Daube, K. J. Davis, and A. Grainger, 2003: A near-field tool for simulating the upstream influence of atmospheric observations: The stochastic time-inverted Lagrangian transport (STILT) model. J. Geophys. Res., 108, 4493, https://doi.org/10.1029/2002JD003161.

    • Search Google Scholar
    • Export Citation
  • Lothon, M., and Coauthors, 2014: The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmos. Chem. Phys., 14, 10 93110 960, https://doi.org/10.5194/acp-14-10931-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loughner, C. P., and Coauthors, 2014: Impact of bay-breeze circulations on surface air quality and boundary layer export. J. Appl. Meteor., 53, 16971713, https://doi.org/10.1175/JAMC-D-13-0323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterization for mesoscale models. Bound.-Layer Meteor., 104, 261304, https://doi.org/10.1023/A:1016099921195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGrath-Spangler, E. L., and A. S. Denning, 2012: Estimates of North American summertime planetary boundary layer depths derived from space-borne lidar. J. Geophys. Res., 117, D15101, https://doi.org/10.1029/2012JD017615.

    • Search Google Scholar
    • Export Citation
  • McGrath-Spangler, E. L., and A. S. Denning, 2013: Global seasonal variations of midday planetary boundary layer depth from CALIPSO space-borne LIDAR. J. Geophys. Res. Atmos., 118, 12261233, https://doi.org/10.1002/jgrd.50198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKain, K., S. C. Wofsy, T. Nehrkorn, J. Eluszkiewicz, J. R. Ehleringer, and B. B. Stephens, 2012: Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region. Proc. Natl. Acad. Sci. USA, 109, 84238428, https://doi.org/10.1073/pnas.1116645109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melfi, S. H., J. D. Sphinhirne, S. H. Chou, and S. P. Palm, 1985: Lidar observations of the vertically organized convection in the planetary boundary layer over the ocean. J. Climate Appl. Meteor., 24, 806821, https://doi.org/10.1175/1520-0450(1985)024<0806:LOOVOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, K., and Coauthors, 2005: The Community Noah Land-Surface Model (LSM) user’s guide, public release version 2.7.1. National Centers for Environmental Prediction/Environmental Modeling Center Tech. Doc., 26 pp., ftp://ftp.emc.ncep.noaa.gov/mmb/gcp/ldas/noahlsm/ver_2.7.1/Noah_LSM_USERGUIDE_2.7.1.doc.

  • Monaghan, A. J., L. Hu, N. A. Brunsell, M. Barlage, and O. V. Wilhelmi, 2014: Evaluating the impact of urban morphology configurations on the accuracy of urban canopy model temperature simulations with MODIS. J. Geophys. Res. Atmos., 119, 63766392, https://doi.org/10.1002/2013JD021227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nehrkorn, T., J. Henderson, M. Leidner, M. Mountain, J. Eluszkiewicz, K. McKain, and S. C. Wofsy, 2013: WRF simulations of the urban circulation in the Salt Lake City area for CO2 modeling. J. Appl. Meteor. Climatol., 52, 323340, https://doi.org/10.1175/JAMC-D-12-061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and Coauthors, 2009: NASA LaRC airborne high spectral resolution lidar aerosol measurements during MILAGRO: Observations and validation. Atmos. Chem. Phys., 9, 48114826, https://doi.org/10.5194/acp-9-4811-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamanca, F., and A. Martilli, 2010: A new building energy model coupled with and urban canopy parameterization for urban climate simulations—Part II. Validation with one dimension off-line simulations. Theor. Appl. Climatol., 99, 345356, https://doi.org/10.1007/s00704-009-0143-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scarino, A. J., and Coauthors, 2014: Comparison of mixed layer heights from airborne high spectral resolution lidar, ground-based measurements, and the WRF-Chem model during CalNex and CARES. Atmos. Chem. Phys., 14, 55475560, https://doi.org/10.5194/acp-14-5547-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seaman, N., and S. Michelson, 2000: Mesoscale meteorological structure of a high-ozone episode during the 1995 NARSTO-Northeast study. J. Appl. Meteor., 39, 384398, https://doi.org/10.1175/1520-0450(2000)039<0384:MMSOAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seibert, P., F. Beyrich, S. Gryning, S. Joffre, A. Rasmussen, and P. Tercier, 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 10011027, https://doi.org/10.1016/S1352-2310(99)00349-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., C. O. Ao, and K. Li, 2010: Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res., 115, D16113, https://doi.org/10.1029/2009JD013680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Y. Zhang, A. Beljaars, J.-C. Golaz, A. R. Jacobson, and B. Medeiros, 2012: Climatology of the planetary boundary layer over the continental United States and Europe. J. Geophys. Res., 117, D17106, https://doi.org/10.1029/2012JD018143.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spangler, T. C., and R. A. Dirks, 1974: Meso-scale variations of the urban mixing height. Bound.-Layer Meteor., 6, 423441, https://doi.org/10.1007/BF02137677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stauffer, R. M., and Coauthors, 2015: Bay breeze influence on surface ozone at Edgewood, MD during July 2011. J. Atmos. Chem., 72, 335353, https://doi.org/10.1007/s10874-012-9241-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

    • Crossref
    • Export Citation
  • Trainer, M., B. A. Ridley, M. P. Buhr, G. Kok, J. Walega, G. Hübler, D. D. Parrish, and F. C. Fehsenfeld, 1995: Regional ozone and urban plumes in the southeastern United States: Birmingham, a case study. J. Geophys. Res., 100, 18 82318 834, https://doi.org/10.1029/95JD01641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., and Coauthors, 2015: Weather Research and Forecasting ARW version 3 modeling system user’s guide. NCAR MMM Division Tech. Rep., 428 pp., http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.6/ARWUsersGuideV3.6.1.pdf.

  • Ware, J., E. A. Kort, P. DeCola, and R. Duren, 2016: Aerosol lidar observations of atmospheric mixing in Los Angeles: Climatology and implications for greenhouse gas observations. J. Geophys. Res. Atmos., 121, 98629878, https://doi.org/10.1002/2016JD024953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welton, E. J., J. R. Campbell, J. D. Spinhirne, and V. S. Scott, 2001: Global monitoring of clouds and aerosols using a network of micropulse lidar systems. Proc. SPIE, 4153, 151158, https://doi.org/10.1117/12.417040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., W. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, https://doi.org/10.1029/2007GL030135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, https://doi.org/10.1175/2009JTECHA1281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the “terra incognita.” J. Atmos. Sci., 61, 18161826, https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2440 1240 118
PDF Downloads 1409 198 13