Characteristics of Background Error Covariance of Soil Moisture and Atmospheric States in Strongly Coupled Land–Atmosphere Data Assimilation

Liao-Fan Lin Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Liao-Fan Lin in
Current site
Google Scholar
PubMed
Close
and
Zhaoxia Pu Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Zhaoxia Pu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study characterizes the spatial and temporal variability of the background error covariance between the land surface soil moisture and atmospheric states for a better understanding of the potentials of assimilating satellite soil moisture data under a framework of strongly coupled land–atmosphere data assimilation. The study uses the Noah land surface model coupled with the Weather Research and Forecasting (WRF) Model and the National Meteorological Center (NMC) method for computing the land–atmosphere background error covariance from 2015 to 2017 over the contiguous United States. The results show that the forecast errors in top-10-cm soil moisture and near-surface air potential temperature and specific humidity are correlated and relatively large during the daytime in the summer. The magnitude of the error correlation between these three states is comparable. For example, in July, the error correlation averaged over all day- and nighttime samples is −0.13 for near-surface temperature and humidity, −0.20 for surface soil moisture and near-surface temperature, and 0.15 for surface soil moisture and near-surface humidity. During the summer, the forecast errors in surface soil moisture are correlated with those of atmospheric states up to the sigma pressure level of 0.9 (approximately 900 hPa for a sea level location) with domain-mean correlations of −0.15 and 0.1 for temperature and humidity, respectively. The results suggest that assimilation of satellite soil moisture data could provide cross-variable impacts comparable to those assimilating conventional near-surface temperature and humidity data. The forecast errors of soil moisture are only marginally correlated with those of the winds.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liao-Fan Lin, liaofan.lin@utah.edu

Abstract

This study characterizes the spatial and temporal variability of the background error covariance between the land surface soil moisture and atmospheric states for a better understanding of the potentials of assimilating satellite soil moisture data under a framework of strongly coupled land–atmosphere data assimilation. The study uses the Noah land surface model coupled with the Weather Research and Forecasting (WRF) Model and the National Meteorological Center (NMC) method for computing the land–atmosphere background error covariance from 2015 to 2017 over the contiguous United States. The results show that the forecast errors in top-10-cm soil moisture and near-surface air potential temperature and specific humidity are correlated and relatively large during the daytime in the summer. The magnitude of the error correlation between these three states is comparable. For example, in July, the error correlation averaged over all day- and nighttime samples is −0.13 for near-surface temperature and humidity, −0.20 for surface soil moisture and near-surface temperature, and 0.15 for surface soil moisture and near-surface humidity. During the summer, the forecast errors in surface soil moisture are correlated with those of atmospheric states up to the sigma pressure level of 0.9 (approximately 900 hPa for a sea level location) with domain-mean correlations of −0.15 and 0.1 for temperature and humidity, respectively. The results suggest that assimilation of satellite soil moisture data could provide cross-variable impacts comparable to those assimilating conventional near-surface temperature and humidity data. The forecast errors of soil moisture are only marginally correlated with those of the winds.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liao-Fan Lin, liaofan.lin@utah.edu
Save
  • Aligo, E. A., W. A. Gallus, and M. Segal, 2007: Summer rainfall forecast spread in an ensemble initialized with different soil moisture analyses. Wea. Forecasting, 22, 299314, https://doi.org/10.1175/WAF995.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bannister, R. N., 2008a: A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariances. Quart. J. Roy. Meteor. Soc., 134, 19511970, https://doi.org/10.1002/qj.339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bannister, R. N., 2008b: A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics. Quart. J. Roy. Meteor. Soc., 134, 19711996, https://doi.org/10.1002/qj.340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, D., W. Huang, Y.-R. Guo, A. J. Bourgeois, and N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914, https://doi.org/10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, D., and Coauthors, 2012: The Weather Research and Forecasting (WRF) Model’s Community Variational/Ensemble Data Assimilation System: WRFDA. Bull. Amer. Meteor. Soc., 93, 831843, https://doi.org/10.1175/BAMS-D-11-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bélair, S., L.-P. Crevier, J. Mailhot, B. Bilodeau, and Y. Delage, 2003: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part I: Warm season results. J. Hydrometeor., 4, 352370, https://doi.org/10.1175/1525-7541(2003)4<352:OIOTIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blankenship, C. B., J. L. Case, B. T. Zavodsky, and W. L. Crosson, 2016: Assimilation of SMOS retrievals in the Land Information System. IEEE Trans. Geosci. Remote Sens., 54, 63206332, https://doi.org/10.1109/TGRS.2016.2579604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Case, J. L., W. L. Crosson, S. V. Kumar, W. M. Lapenta, and C. D. Peters-Lidard, 2008: Impacts of high-resolution land surface initialization on regional sensible weather forecasts from the WRF Model. J. Hydrometeor., 9, 12491266, https://doi.org/10.1175/2008JHM990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Case, J. L., S. V. Kumar, J. Srikishen, and G. J. Jedlovec, 2011: Improving numerical weather predictions of summertime precipitation over the southeastern United States through a high-resolution initialization of the surface state. Wea. Forecasting, 26, 785807, https://doi.org/10.1175/2011WAF2222455.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, Y., D.-H. Cha, M.-I. Lee, J. Kim, C.-S. Jin, S.-H. Park, and M.-S. Joh, 2017: Satellite radiance data assimilation for binary tropical cyclone cases over the western North Pacific. J. Adv. Model. Earth Syst., 9, 832853, https://doi.org/10.1002/2016MS000826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., and Coauthors, 1998: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Quart. J. Roy. Meteor. Soc., 124, 17831807, https://doi.org/10.1002/qj.49712455002.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Rosnay, P., M. Drusch, D. Vasiljevic, G. Balsamo, C. Albergel, and L. Isaksen, 2013: A simplified extended Kalman filter for the global operational soil moisture analysis at ECMWF. Quart. J. Roy. Meteor. Soc., 139, 11991213, https://doi.org/10.1002/qj.2023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Rosnay, P., G. Balsamo, C. Albergel, J. Munoz-Sabater, and L. Isaksen, 2014: Initialisation of land surface variables for numerical weather prediction. Surv. Geophys., 35, 607621, https://doi.org/10.1007/s10712-012-9207-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., P. Viterbo, J.-F. Mahfouf, and A. C. M. Beljaars, 2000: Evaluation of the optimum interpolation and nudging techniques for soil moisture analysis using FIFE data. Mon. Wea. Rev., 128, 17331756, https://doi.org/10.1175/1520-0493(2000)128<1733:EOTOIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, C. S., J.-F. Mahfouf, and J. P. Walker, 2009: An EKF assimilation of AMSR-E soil moisture into the ISBA land surface scheme. J. Geophys. Res., 114, D20104, https://doi.org/10.1029/2008JD011650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, C. S., J.-F. Mahfouf, and J. P. Walker, 2011: Root zone soil moisture from the assimilation of screen-level variables and remotely sensed soil moisture. J. Geophys. Res., 116, D02127, https://doi.org/10.1029/2010JD013829.

    • Search Google Scholar
    • Export Citation
  • Draper, C. S., R. H. Reichle, G. J. M. D. Lannoy, and Q. Liu, 2012: Assimilation of passive and active microwave soil moisture retrievals. Geophys. Res. Lett., 39, L04401, https://doi.org/10.1029/2011GL050655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drusch, M., K. Scipal, P. de Rosnay, G. Balsamo, E. Andersson, P. Bougeault, and P. Viterbo, 2009: Towards a Kalman filter based soil moisture analysis system for the operational ECMWF Integrated Forecast System. Geophys. Res. Lett., 36, L10401, https://doi.org/10.1029/2009GL037716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duerinckx, A., R. Hamdi, A. Deckmyn, A. Djebbar, J.-F. Mahfouf, and P. Termonia, 2017: Combining an EKF soil analysis with a 3D-Var upper-air assimilation in a limited-area NWP model. Quart. J. Roy. Meteor. Soc., 143, 29993013, https://doi.org/10.1002/qj.3141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE, 98, 704716, https://doi.org/10.1109/JPROC.2010.2043918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giard, D., and E. Bazile, 2000: Implementation of a new assimilation scheme for soil and surface variables in a global NWP model. Mon. Wea. Rev., 128, 9971015, https://doi.org/10.1175/1520-0493(2000)128<0997:IOANAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., and R. Yang, 2001: Evaluations of mesoscale models’ simulations of near-surface winds, temperature gradients, and mixing depths. J. Appl. Meteor., 40, 10951104, https://doi.org/10.1175/1520-0450(2001)040<1095:EOMMSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schar, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020, https://doi.org/10.1175/2009JCLI2604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ide, K., P. Courtier, M. Ghil, and A. C. Lorenc, 1997: Unified notation for data assimilation: Operational, sequential, and variational. J. Meteor. Soc. Japan, 75, 181189, https://doi.org/10.2151/jmsj1965.75.1B_181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ingleby, N. B., 2001: The statistical structure of forecast errors and its representation in the Met Office global 3-D variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 127, 209231, https://doi.org/10.1002/qj.49712757112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP meso model. NCEP Office Note 437, 61 pp., https://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.

  • Kerr, Y. H., and Coauthors, 2010: The SMOS mission: New tool from monitoring key elements of the global water cycle. Proc. IEEE, 98, 666687, https://doi.org/10.1109/JPROC.2010.2043032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolassa, J., R. H. Reichle, and C. S. Draper, 2017: Merging active and passive microwave observations in soil moisture data assimilation. Remote Sens. Environ., 191, 117130, https://doi.org/10.1016/j.rse.2017.01.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, https://doi.org/10.1175/JHM510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., R. H. Reichle, C. D. Peters-Lidard, R. D. Koster, X. Zhan, W. T. Crow, J. B. Eylander, and P. R. Houser, 2008: A land surface data assimilation framework using the land information system: Description and applications. Adv. Water Resour., 31, 14191432, https://doi.org/10.1016/j.advwatres.2008.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2014: Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation. J. Hydrometeor., 15, 24462469, https://doi.org/10.1175/JHM-D-13-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., C. D. Peters-Lidard, J. A. Santanello, R. H. Reichle, C. S. Draper, R. D. Koster, G. Nearing, and M. F. Jasinski, 2015: Evaluating the utility of satellite soil moisture retrievals over irrigated areas and the ability of land data assimilation methods to correct for unmodeled processes. Hydrol. Earth Syst. Sci., 19, 44634478, https://doi.org/10.5194/hess-19-4463-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., Z. Pu, J. Sun, and W.-C. Lee, 2014: Impact of 4DVAR assimilation of airborne Doppler radar observations on numerical simulations of the genesis of Typhoon Nuri (2008). J. Appl. Meteor. Climatol., 53, 23252343, https://doi.org/10.1175/JAMC-D-14-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, L.-F., and R. L. Bras, 2017: Monthly maps of SMAP L2 version 4 soil moisture retrievals over contiguous United States in 2016: Data sample size under various quality flags. School of Civil and Environmental Engineering Publ., Georgia Institute of Technology, 13 pp., http://hdl.handle.net/1853/56688.

  • Lin, L.-F., A. M. Ebtehaj, R. L. Bras, A. N. Flores, and J. Wang, 2015: Dynamical precipitation downscaling for hydrologic applications using WRF 4D-Var data assimilation: Implications for GPM era. J. Hydrometeor., 16, 811829, https://doi.org/10.1175/JHM-D-14-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, L.-F., A. M. Ebtehaj, A. N. Flores, S. Bastola, and R. L. Bras, 2017a: Combined assimilation of satellite precipitation and soil moisture: A case study using TRMM and SMOS data. Mon. Wea. Rev., 145, 49975014, https://doi.org/10.1175/MWR-D-17-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, L.-F., A. M. Ebtehaj, J. Wang, and R. L. Bras, 2017b: Soil moisture background error covariance and data assimilation in a coupled land–atmosphere model. Water Resour. Res., 53, 13091335, https://doi.org/10.1002/2015WR017548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., and Coauthors, 2000: The Met. Office global three-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 126, 29913012, https://doi.org/10.1002/qj.49712657002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., 1991: Analysis of soil moisture from near-surface parameters: A feasibility study. J. Appl. Meteor., 30, 15341547, https://doi.org/10.1175/1520-0450(1991)030<1534:AOSMFN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., 2010: Assimilation of satellite-derived soil moisture from ASCAT in a limited-area NWP model. Quart. J. Roy. Meteor. Soc., 136, 784798, https://doi.org/10.1002/qj.602.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., and V. Bliznak, 2011: Combined assimilation of screen-level observations and radar-derived precipitation for soil moisture analysis. Quart. J. Roy. Meteor. Soc., 137, 709722, https://doi.org/10.1002/qj.791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., K. Bergaoui, C. Draper, F. Bouyssel, F. Taillefer, and L. Taseva, 2009: A comparison of two off-line soil analysis schemes for assimilation of screen level observations. J. Geophys. Res., 114, D08105, https://doi.org/10.1029/2008JD011077.

    • Search Google Scholar
    • Export Citation
  • Massey, J. D., W. J. Steenburgh, J. C. Knievel, and W. Y. Y. Cheng, 2016: Regional soil moisture biases and their influence on WRF Model temperature forecasts over the Intermountain West. Wea. Forecasting, 31, 197216, https://doi.org/10.1175/WAF-D-15-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2007: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. Mon. Wea. Rev., 135, 14031423, https://doi.org/10.1175/MWR3352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2008: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3DVAR in a real-data case study. Mon. Wea. Rev., 136, 522540, https://doi.org/10.1175/2007MWR2106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NWS, 2000: NCEP FNL operational model global tropospheric analyses, continuing from July 1999 (updated daily). National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, accessed 3 January 2018, https://doi.org/10.5065/D6M043C6.

    • Crossref
    • Export Citation
  • NWS, 2015: NCEP GDAS/FNL 0.25 degree global tropospheric analyses and forecast grids. National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, accessed 3 January 2018, https://doi.org/10.5065/D65Q4T4Z.

    • Crossref
    • Export Citation
  • Parrens, M., J.-F. Mahfouf, A. L. Barbu, and J.-C. Calvet, 2014: Assimilation of surface soil moisture into a multilayer soil model: Design and evaluation at local scale. Hydrol. Earth Syst. Sci., 18, 673689, https://doi.org/10.5194/hess-18-673-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 17471763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penny, S. G., and T. M. Hamill, 2017: Coupled data assimilation for integrated Earth system analysis and prediction. Bull. Amer. Meteor. Soc., 98, ES169ES172, https://doi.org/10.1175/BAMS-D-17-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penny, S. G., and Coauthors, 2017: Coupled data assimilation for integrated earth system analysis and prediction: Goals, challenges and recommendations. World Weather Research Programme Rep. WWRP 2017-3, 50 pp., https://www.wmo.int/pages/prog/arep/wwrp/new/documents/Final_WWRP_2017_3_27_July.pdf.

  • Powers, J. G., and Coauthors, 2017: The Weather Research and Forecasting Model. Bull. Amer. Meteor. Soc., 98, 17171737, https://doi.org/10.1175/BAMS-D-15-00308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, Z., 2017: Surface data assimilation and near-surface weather prediction over complex terrain. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, Vol. III, S. K. Park and L. Xu, Eds., Springer, 219–240, https:/doi.org/10.1007/978-3-319-43415-5_10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quintanar, A. I., and R. Mahmood, 2012: Ensemble forecast spread induced by soil moisture changes over mid-south and neighboring mid-western region of the USA. Tellus, 64A, 17156, https://doi.org/10.3402/tellusa.v64i0.17156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmy, M., T. Koike, S. Boussetta, H. Lu, and X. Li, 2011: Development of a satellite land data assimilation system coupled with a mesoscale model in the Tibetan Plateau. IEEE Trans. Geosci. Remote Sens., 49, 28472862, https://doi.org/10.1109/TGRS.2011.2112667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmy, M., T. Koike, D. Kuria, C. R. Mirza, X. Li, and K. Yang, 2012: Development of the Coupled Atmosphere and Land Data Assimilation System (CALDAS) and its application over the Tibetan Plateau. IEEE Trans. Geosci. Remote Sens., 50, 42274242, https://doi.org/10.1109/TGRS.2012.2190517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., and R. D. Koster, 2005: Global assimilation of satellite surface soil moisture retrievals into the NASA Catchment land surface model. Geophys. Res. Lett., 32, L02404, https://doi.org/10.1029/2004GL021700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., R. D. Koster, P. Liu, S. P. P. Mahanama, E. G. Njoku, and M. Owe, 2007: Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and the Scanning Multichannel Microwave Radiometer (SMMR). J. Geophys. Res., 112, D09108, https://doi.org/10.1029/2006JD008033.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., W. T. Crow, and C. L. Keppenne, 2008: An adaptive ensemble Kalman filter for soil moisture data assimilation. Water Resour. Res., 44, W03423, https://doi.org/10.1029/2007WR006357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahoo, A. K., G. J. M. De Lannoy, R. H. Reichle, and P. R. Houser, 2013: Assimilation and downscaling of satellite observed soil moisture over the Little River experimental watershed in Georgia, USA. Adv. Water Resour., 52, 1933, https://doi.org/10.1016/j.advwatres.2012.08.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., S. V. Kumar, C. D. Peters-Lidard, and P. M. Lawston, 2016: Impact of soil moisture assimilation on land surface model spinup and coupled land–atmosphere prediction. J. Hydrometeor., 17, 517540, https://doi.org/10.1175/JHM-D-15-0072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, S., Y. Wang, W. Wanger, and J.-F. Mahfouf, 2014: Impact of ASCAT soil moisture assimilation on regional precipitation forecasts: A case study for Austria. Mon. Wea. Rev., 142, 15251541, https://doi.org/10.1175/MWR-D-12-00311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seto, R., T. Koike, and M. Rasmy, 2016: Heavy rainfall prediction applying satellite-based cloud data assimilation over land. J. Geophys. Res. Atmos., 121, 97379755, https://doi.org/10.1002/2016JD025291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, H., and Coauthors, 2016: Bridging research to operations transitions: Status and plans of community GSI. Bull. Amer. Meteor. Soc., 97, 14271440, https://doi.org/10.1175/BAMS-D-13-00245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://dx.doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Sun, J., H. Wang, W. Tong, Y. Zhang, C.-Y. Lin, and D. Xu, 2016: Comparison of the impacts of momentum control variables on high-resolution variational data assimilation and precipitation forecasting. Mon. Wea. Rev., 144, 149169, https://doi.org/10.1175/MWR-D-14-00205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, C., T. M. Hamill, and T. T. Warner, 2006: Will perturbing soil moisture improve warm-season ensemble forecasts? A proof of concept. Mon. Wea. Rev., 134, 31743189, https://doi.org/10.1175/MWR3248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., F. Chen, K. W. Manning, M. A. LeMone, and C. A. Davis, 2008: Sensitivity of the PBL and precipitation in 12-day simulations of warm-season convection using different land surface models and soil wetness conditions. Mon. Wea. Rev., 136, 23212343, https://doi.org/10.1175/2007MWR2289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, S., and G. Salvucci, 2016: Empirical evidence of contrasting soil moisture–precipitation feedbacks across the United States. Science, 352, 825828, https://doi.org/10.1126/science.aaa7185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

  • Van Weverberg, K. V., N. P. M. van Lipzig, L. Delobbe, and D. Lauwaet, 2010: Sensitivity of quantitative precipitation forecast to soil moisture initialization and microphysics parameterization. Quart. J. Roy. Meteor. Soc., 136, 978996, https://doi.org/10.1002/qj.611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., X.-Y. Huang, J. Sun, D. Xu, M. Zhang, S. Fan, and J. Zhong, 2014: Inhomogeneous background error modeling for WRF-Var using the NMC method. J. Appl. Meteor. Climatol., 53, 22872309, https://doi.org/10.1175/JAMC-D-13-0281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., G.-Y. Lien, J.-H. Chen, and F. Zhang, 2010: Assimilation of tropical cyclone track and structure based on the ensemble Kalman filter (EnKF). J. Atmos. Sci., 67, 38063822, https://doi.org/10.1175/2010JAS3444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W.-S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 29052916, https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., B. A. Tolson, J. Li, R. M. Staebler, F. Seglenieks, A. Haghnegahdar, and B. Davison, 2015: Assimilation of SMOS soil moisture over the Great Lakes basin. Remote Sens. Environ., 169, 163175, https://doi.org/10.1016/j.rse.2015.08.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., B. A. Tolson, J. Li, and B. Davison, 2017: Comparison of X-band and L-band soil moisture retrievals for land data assimilation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 38503860, https://doi.org/10.1109/JSTARS.2017.2703988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, C., Z. Liu, J. Bresch, S. R. H. Rizvi, X.-Y. Huang, and J. Min, 2016: AMSR2 all-sky radiance assimilation and its impact on the analysis and forecast of Hurricane Sandy with a limited-area data assimilation system. Tellus, 68, 30917, https://doi.org/10.3402/tellusa.v68.30917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J., X. Zhan, Y. Zheng, J. Liu, C. R. Hain, and L. Fang, 2014: Impact of quality control of satellite soil moisture data on their assimilation into land surface model. Geophys. Res. Lett., 41, 71597166, https://doi.org/10.1002/2014GL060659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J., X. Zhan, J. Liu, L. Fang, and C. R. Hain, 2015: Enhancing model skill by assimilating SMOPS-blended soil moisture product into Noah land surface model. J. Hydrometeor., 16, 917931, https://doi.org/10.1175/JHM-D-14-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, https://doi.org/10.1175/MWR-D-10-05091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Z. Meng, and A. Aksoy, 2006: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect model experiments. Mon. Wea. Rev., 134, 722736, https://doi.org/10.1175/MWR3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., Z. Pu, and X. Zhang, 2013: Examination of errors in near-surface temperature and wind from WRF numerical simulations in regions of complex terrain. Wea. Forecasting, 28, 893914, https://doi.org/10.1175/WAF-D-12-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1394 851 95
PDF Downloads 569 88 8