Mechanisms for Wind Direction Changes in the Very Stable Boundary Layer

D. Finn NOAA Air Resources Laboratory, Field Research Division, Idaho Falls, Idaho

Search for other papers by D. Finn in
Current site
Google Scholar
PubMed
Close
,
R. M. Eckman NOAA Air Resources Laboratory, Field Research Division, Idaho Falls, Idaho

Search for other papers by R. M. Eckman in
Current site
Google Scholar
PubMed
Close
,
Z. Gao Laboratory for Atmospheric Research, Washington State University, Pullman, Washington

Search for other papers by Z. Gao in
Current site
Google Scholar
PubMed
Close
, and
H. Liu Laboratory for Atmospheric Research, Washington State University, Pullman, Washington

Search for other papers by H. Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Large, rapid, and intermittent changes in wind direction were commonly observed in low–wind speed conditions in the very stable boundary layer during the phase 2 of the Project Sagebrush field tracer study. This paper investigates the occurrence and magnitude of these wind direction changes in the very stable boundary layer and explores their associated meteorological factors. The evidence indicates that these wind direction changes occur mainly at wind speeds of less than 1.5 m s−1 and are associated with momentum and sensible heat fluxes approaching zero in low–wind shear conditions. This results in complete vertical decoupling. They are only weakly dependent on the magnitude of turbulence. The magnitude of the wind direction changes is generally greatest near the surface, because of the greater prevalence of low wind speeds there, and decreases upward.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: D. Finn, dennis.finn@noaa.gov

Abstract

Large, rapid, and intermittent changes in wind direction were commonly observed in low–wind speed conditions in the very stable boundary layer during the phase 2 of the Project Sagebrush field tracer study. This paper investigates the occurrence and magnitude of these wind direction changes in the very stable boundary layer and explores their associated meteorological factors. The evidence indicates that these wind direction changes occur mainly at wind speeds of less than 1.5 m s−1 and are associated with momentum and sensible heat fluxes approaching zero in low–wind shear conditions. This results in complete vertical decoupling. They are only weakly dependent on the magnitude of turbulence. The magnitude of the wind direction changes is generally greatest near the surface, because of the greater prevalence of low wind speeds there, and decreases upward.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: D. Finn, dennis.finn@noaa.gov
Save
  • Anfossi, D., S. Alessandrini, S. Trini Castelli, E. Ferrero, D. Oettl, and G. Degrazia, 2006: Tracer dispersion simulation in low wind speed conditions with a new 2D Langevin equation system. Atmos. Environ., 40, 72347245, https://doi.org/10.1016/j.atmosenv.2006.05.081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barad, M. L., Ed., 1958a: Project Prairie Grass, a field program in diffusion. Geophysical Research Papers, No. 59, Vol. I, Air Force Cambridge Research Center Rep. AFCRC-TR-58-235(I), 280 pp., http://www.harmo.org/jsirwin/PGrassVolumeI.pdf.

    • Crossref
    • Export Citation
  • Barad, M. L., Ed., 1958b: Project Prairie Grass, a field program in diffusion. Geophysical Research Papers, No. 59, Vol. II, Air Force Cambridge Research Center Rep. AFCRC-TR-58-235(II), 209 pp., http://www.harmo.org/jsirwin/PGrassVolumeII.pdf.

    • Crossref
    • Export Citation
  • Cava, D., L. Mortarini, U. Giostra, R. Richiardone, and D. Anfossi, 2017: A wavelet analysis of low-wind-speed submeso motions in a nocturnal boundary layer. Quart. J. Roy. Meteor. Soc., 143, 661669, https://doi.org/10.1002/qj.2954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cimorelli, A. J., and Coauthors, 2004: AERMOD: Description of model formulation. U.S. Environmental Protection Agency Rep. EPA-454/R-03-004, 91 pp., https://www3.epa.gov/scram001/7thconf/aermod/aermod_mfd.pdf.

  • Cimorelli, A. J., and Coauthors, 2005: AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization. J. Appl. Meteor., 44, 682693, https://doi.org/10.1175/JAM2227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clawson, K. L., R. M. Eckman, N. F. Hukari, J. D. Rich, and N. R. Ricks, 2007. Climatography of the Idaho National Laboratory. 3rd ed. NOAA Air Resources Laboratory Tech. Memo. OAR ARL-259, 142 pp., https://doi.org/10.7289/V500003F.

    • Crossref
    • Export Citation
  • EPA, 2000: Meteorological monitoring guidance for regulatory modeling applications. U.S. Environmental Protection Agency Rep. EPA-454/R-99-005, 171 pp., https://www3.epa.gov/scram001/guidance/met/mmgrma.pdf.

  • Finn, D., and Coauthors, 2015: Project SageBrush phase 1. NOAA Air Resources Laboratory Tech. Memo. OAR ARL-268, 338 pp., https://doi.org/10.7289/V5VX0DHV.

    • Crossref
    • Export Citation
  • Finn, D., K. L. Clawson, R. M. Eckman, H. Liu, E. S. Russell, Z. Gao, and S. Brooks, 2016: Project Sagebrush: Revisiting the value of the horizontal plume spread parameter σy. J. Appl. Meteor. Climatol., 55, 13051322, https://doi.org/10.1175/JAMC-D-15-0283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finn, D., and Coauthors, 2017: Project Sagebrush phase 2. NOAA Air Resources Laboratory Tech. Memo. OAR ARL-275, 392 pp., https://doi.org/10.7289/V5/TM-OAR-ARL-275.

    • Crossref
    • Export Citation
  • Finn, D., R. G. Carter, R. M. Eckman, J. D. Rich, Z. Gao, and H. Liu, 2018: Plume dispersion in low-wind-speed conditions during Project Sagebrush phase 2 with emphasis on concentration variability. Bound.-Layer Meteor., 169, 6791, https://doi.org/10.1007/s10546-018-0360-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gifford, F. A., 1961: Use of routine meteorological observations for estimating atmospheric dispersion. Nucl. Saf., 2, 4751.

  • Goulart, A., G. Degrazia, O. Acevedo, and D. Anfossi, 2007: Theoretical considerations of meandering wind in simplified conditions. Bound.-Layer Meteor., 125, 279287, https://doi.org/10.1007/s10546-007-9179-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., 1983: Lateral turbulence intensity and plume meandering during stable conditions. J. Climate Appl. Meteor., 22, 14241430, https://doi.org/10.1175/1520-0450(1983)022<1424:LTIAPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hicks, B. B., W. R. Pendergrass, C. A. Vogel, R. N. Keener, and S. M. Leyton, 2014: On the micrometeorology of the southern Great Plains 1: Legacy relationships revisited. Bound.-Layer Meteor., 151, 389405, https://doi.org/10.1007/s10546-013-9902-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiscox, A. L., D. R. Miller, and C. J. Nappo, 2010: Plume meander and dispersion in a stable boundary layer. J. Geophys. Res., 115, D21105, https://doi.org/10.1029/2010JD014102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lan, C., H. Liu, D. Li, G. G. Katul, and D. Finn, 2018: Distinct turbulence structures in stable boundary layers with two coupling states. J. Geophys. Res. Atmos., 123, 78397854, https://doi.org/10.1029/2018JD028628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, J., L. Zhang, Y. Wang, X. Cao, Q. Zhang, H. Wang, and B. Zhang, 2014: Turbulence regimes and the validity of similarity theory in the stable boundary layer over complex terrain of the Loess Plateau, China. J. Geophys. Res. Atmos., 119, 66096021, https://doi.org/10.1002/2014JD021510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luhar, A. K., 2013: Lagrangian particle modeling of dispersion in light winds. Lagrangian Modeling of the Atmosphere, Geophys. Monogr., Vol. 200, Amer. Geophys. Union, 37–51.

    • Crossref
    • Export Citation
  • Luhar, A. K., and P. J. Hurley, 2012: Application of a coupled prognostic model to turbulence and dispersion in light-wind stable conditions, with an analytical correction to vertically resolved concentrations near the surface. Atmos. Environ., 51, 5666, https://doi.org/10.1016/j.atmosenv.2012.01.046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2007: Weak-wind mesoscale meandering in the nocturnal boundary layer. Environ. Fluid Mech., 7, 331347, https://doi.org/10.1007/s10652-007-9024-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2008: Mesoscale wind direction shifts in the stable boundary-layer. Tellus, 60A, 700705, https://doi.org/10.1111/j.1600-0870.2008.00324.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2014: Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech., 46, 2345, https://doi.org/10.1146/annurev-fluid-010313-141354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mortarini, L., and D. Anfossi, 2015: Proposal of an empirical velocity spectrum formula in low-wind speed conditions. Quart. J. Roy. Meteor. Soc., 141, 8597, https://doi.org/10.1002/qj.2336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mortarini, L., S. Maldaner, L. P. Moor, M. B. Stefanello, O. Acevedo, G. Degrazia, and D. Anfossi, 2016a: Temperature auto-correlation and spectra functions in low-wind meandering conditions. Quart. J. Roy. Meteor. Soc., 142, 18811889, https://doi.org/10.1002/qj.2796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mortarini, L., M. Stefanello, G. Degrazia, D. Roberti, S. Trini Castelli, and D. Anfossi, 2016b: Characterization of wind meandering in low-wind-speed conditions. Bound.-Layer Meteor., 161, 165182, https://doi.org/10.1007/s10546-016-0165-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mortarini, L., D. Cava, U. Giostra, O. Acevedo, L. G. Nogueira Martins, P. E. Soares de Oliveira, and D. Anfossi, 2018: Observations of submeso motions and intermittent turbulent mixing across a low level jet with a 132-m tower. Quart. J. Roy. Meteor. Soc., 144, 172183, https://doi.org/10.1002/qj.3192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oettl, D., A. Goulart, G. Degrazia, and D. Anfossi, 2005: A new hypothesis on meandering atmospheric flows in low wind speed conditions. Atmos. Environ., 39, 17391748, https://doi.org/10.1016/j.atmosenv.2004.11.034.

    • Search Google Scholar
    • Export Citation
  • Sagendorf, J. F., and C. R. Dickson, 1974: Diffusion under low windspeed, inversion conditions. NOAA Tech. Memo. ERL ARL-52, 89 pp., http://www.arl.noaa.gov/documents/reports/ARL-52.pdf.

    • Crossref
    • Export Citation
  • Slade, D. H., Ed., 1968: Meteorology and Atomic Energy. U.S. Atomic Energy Commission Office of Information Services Rep. TID-24190, 445 pp., https://www.orau.org/ptp/PTP%20Library/library/Subject/Meteorology/meteorology%20and%20atomic%20energy.pdf.

  • Sun, J., L. Mahrt, R. Banta, and Y. L. Pichugina, 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci., 69, 338351, https://doi.org/10.1175/JAS-D-11-082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., L. Mahrt, C. Nappo, and D. Lenschow, 2015: Wind and temperature oscillations generated by wave-turbulence interactions in the stably stratified boundary layer. J. Atmos. Sci., 72, 14841503, https://doi.org/10.1175/JAS-D-14-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trini Castelli, S., S. Falabino, L. Mortarini, E. Ferrero, R. Richiardone, and D. Anfossi, 2014: Experimental investigation of surface-layer parameters in low-wind speed conditions in a suburban area. Quart. J. Roy. Meteor. Soc., 140, 20232036, https://doi.org/10.1002/qj.2271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. B., 1970: Workbook of atmospheric diffusion estimates. U.S. Environmental Protection Agency Office of Air Programs Publ. AP-26, 84 pp., http://www.dot.ca.gov/newtech/researchreports/1969-1970/70-07.pdf.

  • Venkatram, A., M. G. Snyder, D. K. Heist, S. G. Perry, W. B. Petersen, and V. Isakov, 2013: Re-formulation of plume spread for near-surface dispersion. Atmos. Environ., 77, 846855, https://doi.org/10.1016/j.atmosenv.2013.05.073.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1859 882 79
PDF Downloads 509 77 7