Resonance Scattering Effects in Wet Hail Observed with a Dual-X-Band-Frequency, Dual-Polarization Doppler on Wheels Radar

Matthew R. Kumjian Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Matthew R. Kumjian in
Current site
Google Scholar
PubMed
Close
,
Yvette P. Richardson Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Yvette P. Richardson in
Current site
Google Scholar
PubMed
Close
,
Traeger Meyer Center for Severe Weather Research, Boulder, Colorado

Search for other papers by Traeger Meyer in
Current site
Google Scholar
PubMed
Close
,
Karen A. Kosiba Center for Severe Weather Research, Boulder, Colorado

Search for other papers by Karen A. Kosiba in
Current site
Google Scholar
PubMed
Close
, and
Joshua Wurman Center for Severe Weather Research, Boulder, Colorado

Search for other papers by Joshua Wurman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two of the “Doppler on Wheels” facility radars (DOW6 and DOW7) have been upgraded to dual-polarization capabilities and operate at two closely spaced X-band frequencies. For particles with sizes that are large relative to the wavelength, resonance scattering effects may lead to differences in the backscattered radiation between these two frequencies. This study investigates the utility of dual-frequency, dual-polarization DOW radars for hail detection and sizing. T-matrix scattering calculations at the two X-band DOW7 frequencies reveal that dual-frequency differences in the radar reflectivity factors at horizontal polarization (ΔλZH) and differential reflectivities (ΔλZDR) exist for hailstones, whereas negligible differences exist for raindrops. These differences are enhanced for wet or melting hailstones. Further, these dual-frequency differences may be positive or negative, thereby defining four distinct quadrants in the ΔλZH–ΔλZDR parameter space that occur for narrow bands of hail sizes. DOW7 data from two hail-bearing storms are analyzed: one produced only small hail, and the other produced severe hail up to ~3.8 cm in diameter. The analysis reveals dual-frequency signals that are consistent with the scattering calculations for those sizes, including consistent changes in the signatures below the melting layer in the first storm as hailstones acquire more liquid meltwater and a shift in the ΔλZH–ΔλZDR parameter space over time as the second storm grew upscale and hail sizes decreased. Implications for further applications and suggestions about closely spaced dual-frequency observations at other wavelengths are discussed.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-17-0362.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Matthew Kumjian, kumjian@psu.edu

Abstract

Two of the “Doppler on Wheels” facility radars (DOW6 and DOW7) have been upgraded to dual-polarization capabilities and operate at two closely spaced X-band frequencies. For particles with sizes that are large relative to the wavelength, resonance scattering effects may lead to differences in the backscattered radiation between these two frequencies. This study investigates the utility of dual-frequency, dual-polarization DOW radars for hail detection and sizing. T-matrix scattering calculations at the two X-band DOW7 frequencies reveal that dual-frequency differences in the radar reflectivity factors at horizontal polarization (ΔλZH) and differential reflectivities (ΔλZDR) exist for hailstones, whereas negligible differences exist for raindrops. These differences are enhanced for wet or melting hailstones. Further, these dual-frequency differences may be positive or negative, thereby defining four distinct quadrants in the ΔλZH–ΔλZDR parameter space that occur for narrow bands of hail sizes. DOW7 data from two hail-bearing storms are analyzed: one produced only small hail, and the other produced severe hail up to ~3.8 cm in diameter. The analysis reveals dual-frequency signals that are consistent with the scattering calculations for those sizes, including consistent changes in the signatures below the melting layer in the first storm as hailstones acquire more liquid meltwater and a shift in the ΔλZH–ΔλZDR parameter space over time as the second storm grew upscale and hail sizes decreased. Implications for further applications and suggestions about closely spaced dual-frequency observations at other wavelengths are discussed.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-17-0362.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Matthew Kumjian, kumjian@psu.edu

Supplementary Materials

    • Supplemental Materials (PDF 403 KB)
Save
  • Atlas, D., and F. H. Ludlam, 1961: Multi-wavelength radar reflectivity of hailstorms. Quart. J. Roy. Meteor. Soc., 87, 523534, https://doi.org/10.1002/qj.49708737407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodine, D. J., R. D. Palmer, and G. Zhang, 2014: Dual-wavelength polarimetric radar analyses of tornadic debris signatures. J. Appl. Meteor. Climatol., 53, 242261, https://doi.org/10.1175/JAMC-D-13-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., 1992: On the absurdity and inadvisability of calling particles Mie scatterers. Opt. Photonics News, 3, 1819.

  • Bohren, C. F., and D. R. Huffman, 1983: Absorption and Scattering of Light by Small Particles. 1st ed. Wiley-VCH, 544 pp.

  • Borowska, L., A. V. Ryzhkov, D. S. Zrnić, C. Simmer, and R. Palmer, 2011: Attenuation and differential attenuation of 5-cm wavelength radiation in melting hail. J. Appl. Meteor. Climatol., 50, 5976, https://doi.org/10.1175/2010JAMC2465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674685, https://doi.org/10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2; Corrigendum. J. Appl. Meteor., 44, 186, https://doi.org/10.1175/1520-0450(2005)44<186:C>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and T. A. Seliga, 1977a: Scattering from axisymmetric dielectrics or perfect conductors imbedded in an axisymmetric dielectric. IEEE Trans. Antennas Propag., 25, 575580, https://doi.org/10.1109/TAP.1977.1141642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and T. A. Seliga, 1977b: Scattering from nonspherical hydrometeors. Ann. Telecommun., 32, 392397.

  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar Principles and Applications. 1st ed. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Bringi, V. N., R. M. Rasmussen, and J. Vivekanandan, 1986: Multiparameter radar measurements in Colorado convective storms. Part II: Hail detection studies. J. Atmos. Sci., 43, 25642577, https://doi.org/10.1175/1520-0469(1986)043<2564:MRMICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R., D. Atlas, P. Eccles, R. Fetter, and E. Mueller, 1973: Dual-wavelength radar hail detection. Bull. Amer. Meteor. Soc., 54, 921924, https://doi.org/10.1175/1520-0477(1973)054<0921:DWRHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 2006: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Eccles, P. J., and D. Atlas, 1973: A dual-wavelength radar hail detector. J. Appl. Meteor., 12, 847854, https://doi.org/10.1175/1520-0450(1973)012<0847:ADWRHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellis, S., and J. Vivekanandan, 2010: Water vapor estimates using simultaneous dual-wavelength radar observations. Radio Sci., 45, RS5002, https://doi.org/10.1029/2009RS004280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaussiat, N., H. Sauvageot, and A. J. Illingworth, 2003: Cloud liquid water and ice content retrieved by multiwavelength radar. J. Atmos. Oceanic Technol., 20, 12641275, https://doi.org/10.1175/1520-0426(2003)020<1264:CLWAIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevation Convection at Night field project. Bull. Amer. Meteror. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., G. Scarchilli, and V. Chandrasekar, 1999: A procedure to calibrate multiparameter weather radar using properties of the rain medium. IEEE Trans. Geosci. Remote Sens., 37, 269276, https://doi.org/10.1109/36.739161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, E. M., T. J. Schuur, and A. V. Ryzhkov, 2018: A polarimetric analysis of ice microphysical processes in snow, using quasi-vertical profiles. J. Appl. Meteor. Climatol., 57, 3150, https://doi.org/10.1175/JAMC-D-17-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., and A. R. Jameson, 1992: Observing precipitation through dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 73, 13651374, https://doi.org/10.1175/1520-0477(1992)073<1365:OPTDPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., N. Gaussian, and A. J. Illingworth, 2005: Stratocumulus liquid water content from dual-wavelength radar. J. Atmos. Oceanic Technol., 22, 12071218, https://doi.org/10.1175/JTECH1768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houser, J., H. B. Bluestein, and J. C. Snyder, 2015: Rapid-scan, polarimetric, Doppler radar observations of tornadogenesis and tornado dissipation in a tornado supercell: The “El Reno, Oklahoma” storm of 24 May 2011. Mon. Wea. Rev., 143, 26852710, https://doi.org/10.1175/MWR-D-14-00253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., S. M. Ellis, M. Dixon, and G. Meymaris, 2010a: Modeling, error analysis, and evaluation of dual-polarization variables obtained from simultaneous horizontal and vertical polarization transmit radar. Part I: Modeling and antenna errors. J. Atmos. Oceanic Technol., 27, 15831598, https://doi.org/10.1175/2010JTECHA1336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., S. M. Ellis, M. Dixon, and G. Meymaris, 2010b: Modeling, error analysis, and evaluation of dual-polarization variables obtained from simultaneous horizontal and vertical polarization transmit radar. Part II: Experimental data. J. Atmos. Oceanic Technol., 27, 15991607, https://doi.org/10.1175/2010JTECHA1337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., S. M. Ellis, W.-Y. Chang, S. Rutledge, and M. Dixon, 2014: Modeling and interpretation of S-band ice crystal depolarization signatures from data obtained by simultaneously transmitting horizontally and vertically polarized fields. J. Appl. Meteor. Climatol., 53, 16591677, https://doi.org/10.1175/JAMC-D-13-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., and R. Srivastava, 1978: Dual-wavelength Doppler radar observations of hail at vertical incidence. J. Appl. Meteor., 17, 16941703, https://doi.org/10.1175/1520-0450(1978)017<1694:DWDROO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., and A. Heymsfield, 1980: Hail growth mechanisms in a Colorado hailstorm. Part I: Dual-wavelength radar observations. J. Atmos. Sci., 37, 17631778, https://doi.org/10.1175/1520-0469(1980)037<1763:HGMIAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Z., M. R. Kumjian, R. S. Schrom, I. Giammanco, T. Brown-Giammanco, H. Estes, R. Maiden, and A. Heymsfield, 2018: Comparisons of electromagnetic scattering properties of real hailstones and spheroids. J. Appl. Meteor. Climatol., https://doi.org/10.1175/JAMC-D-17-0344.1, in press.

    • Search Google Scholar
    • Export Citation
  • Junyent, F., and V. Chandrasekar, 2016: An examination of precipitation using CSU–CHILL dual-wavelength, dual-polarization radar observations. J. Atmos. Oceanic Technol., 33, 313329, https://doi.org/10.1175/JTECH-D-14-00229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kneifel, S., M. S. Kulie, and R. Bennartz, 2011: A triple-frequency approach to retrieve microphysical snowfall parameters. J. Geophys. Res., 116, D11203, https://doi.org/10.1029/2010JD015430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kneifel, S., A. von Lerber, J. Tiira, D. Moisseev, P. Kollias, and J. Leinonen, 2015: Observed relations between snowfall microphysics and triple-frequency radar measurements. J. Geophys. Res. Atmos., 120, 60346055, https://doi.org/10.1002/2015JD023156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013a: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013b: Principles and applications of dual-polarization weather radar. Part III: Artifacts. J. Oper. Meteor., 1, 265274, https://doi.org/10.15191/nwajom.2013.0121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and Z. J. Lebo, 2016: Large accumulations of small hail. 28th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 8A.4, https://ams.confex.com/ams/28SLS/webprogram/Paper301237.html.

  • Kumjian, M. R., A. V. Ryzhkov, V. M. Melnikov, and T. J. Schuur, 2010: Rapid-scan super-resolution observations of a cyclic supercell with a dual-polarization WSR-88D. Mon. Wea. Rev., 138, 37623786, https://doi.org/10.1175/2010MWR3322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louf, V., O. Pujol, H. Sauvageot, and J. Riedi, 2014: The dual-wavelength method for hailstorm detection by airborne radar. IEEE Trans. Geosci. Remote Sens., 52, 73277335, https://doi.org/10.1109/TGRS.2014.2311316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., 2004: Simultaneous transmission mode for the polarimetric WSR-88D: Statistical biases and standard deviations of polarimetric variables. NSSL Tech. Rep., 84 pp.

  • Melnikov, V. M., 2017: Parameters of cloud ice particles retrieved from radar data. J. Atmos. Oceanic Technol., 34, 717728, https://doi.org/10.1175/JTECH-D-16-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., R. R. Lee, and N. J. Langlieb, 2010: Hail reflectivity signatures from two adjacent WSR-88Ds: Carrier frequency and calibration issues. 26th Conf. on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology, Atlanta, GA, Amer. Meteor. Soc., 8.5, https://ams.confex.com/ams/90annual/webprogram/Paper161721.html.

  • Melnikov, V. M., D. S. Zrnić, D. Burgess, and E. Mansell, 2014: Observations of hail cores of tornadic thunderstorms with three polarimetric radars. 30th Conf. on Environmental Information Processing Techniques, Atlanta, GA, Amer. Meteor. Soc., 11, https://ams.confex.com/ams/94Annual/webprogram/Paper233038.html.

  • Meneghini, R., L. Liao, and L. Tian, 2005: A feasibility study for simultaneous estimates of water vapor and precipitation parameters using a three-frequency radar. J. Appl. Meteor., 44, 15111525, https://doi.org/10.1175/JAM2302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mie, G., 1908: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen (Contributions to the optics of cloudy media, especially colloidal metal solutions). Ann. Phys., 330, 377445, https://doi.org/10.1002/andp.19083300302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 2000: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt., 39, 10261031, https://doi.org/10.1364/AO.39.001026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picca, J. C., and A. V. Ryzhkov, 2012: A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Mon. Wea. Rev., 140, 13851403, https://doi.org/10.1175/MWR-D-11-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and A. J. Heymsfield, 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 27542763, https://doi.org/10.1175/1520-0469(1987)044<2754:MASOGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., V. Levizzani, and H. R. Pruppacher, 1984: A wind tunnel and theoretical study on the melting behavior of atmospheric ice particles. III. Experiment and theory for spherical ice particles of radius > 500 μm. J. Atmos. Sci., 41, 381388, https://doi.org/10.1175/1520-0469(1984)041<0381:AWTATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rinehart, R. E., and J. D. Tuttle, 1982: Antenna beam patterns and dual-wavelength processing. J. Appl. Meteor., 21, 18651880, https://doi.org/10.1175/1520-0450(1982)021<1865:ABPADW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 2007: Depolarization in ice crystals and its effect on radar polarimetric measurements. J. Atmos. Oceanic Technol., 24, 12561267, https://doi.org/10.1175/JTECH2034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnić, 2005: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, https://doi.org/10.1175/BAMS-86-6-809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894, https://doi.org/10.1175/2010JAMC2363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and A. P. Khain, 2013a: Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol., 52, 28492870, https://doi.org/10.1175/JAMC-D-13-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and P. Zhang, 2013b: Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteor. Climatol., 52, 28712886, https://doi.org/10.1175/JAMC-D-13-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., P. Zhang, H. D. Reeves, M. R. Kumjian, T. Tschallener, S. Trömel, and C. Simmer, 2016: Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Oceanic Technol., 33, 551562, https://doi.org/10.1175/JTECH-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., H. B. Bluestein, G. Zhang, and S. J. Frasier, 2010: Attenuation correction and hydrometeor classification of high-resolution, X-band, dual-polarized mobile radar measurements in severe convective storms. J. Atmos. Oceanic Technol., 27, 19792001, https://doi.org/10.1175/2010JTECHA1356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., H. B. Bluestein, V. Venkatesh, and S. J. Frasier, 2013: Observations of polarimetric signatures in supercells by an X-band mobile Doppler radar. Mon. Wea. Rev., 141, 329, https://doi.org/10.1175/MWR-D-12-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., and P. L. Heinselman, 2016: Rapid-scan polarimetric observations of central Oklahoma severe storms on 31 May 2013. Wea. Forecasting, 31, 1942, https://doi.org/10.1175/WAF-D-15-0111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tridon, F., A. Battaglia, and P. Kollias, 2013: Disentangling Mie and attenuation effects in rain using a Ka–W dual-wavelength Doppler spectral ratio technique. Geophys. Res. Lett., 40, 55485552, https://doi.org/10.1002/2013GL057454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tridon, F., A. Battaglia, E. Luke, and P. Kollias, 2017: Rain retrieval from dual-frequency radar Doppler spectra: Validation and potential for a midlatitude precipitating case study. Quart. J. Roy. Meteor. Soc., 143, 13641380, https://doi.org/10.1002/qj.3010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trömel, S., M. R. Kumjian, A. V. Ryzhkov, C. Simmer, and M. Diederich, 2013: Backscatter differential phase—Estimation and variability. J. Appl. Meteor. Climatol., 52, 25292548, https://doi.org/10.1175/JAMC-D-13-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trömel, S., A. V. Ryzhkov, P. Zhang, and C. Simmer, 2014: Investigations of backscatter differential phase in the melting layer. J. Appl. Meteor. Climatol., 53, 23442359, https://doi.org/10.1175/JAMC-D-14-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., and R. E. Rinehart, 1983: Attenuation correction in dual-wavelength analyses. J. Climate Appl. Meteor., 22, 19141921, https://doi.org/10.1175/1520-0450(1983)022<1914:ACIDWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., V. N. Bringi, H. D. Orville, and F. J. Kopp, 1989: Multiparameter radar study of a microburst: Comparison with model results. J. Atmos. Sci., 46, 601620, https://doi.org/10.1175/1520-0469(1989)046<0601:MRSOAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 1982: Hail parameter relations: A comprehensive digest. J. Appl. Meteor., 21, 2243, https://doi.org/10.1175/1520-0450(1982)021<0022:HPRACD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., V. N. Bringi, and R. Raghavan, 1990: Multiparameter radar modeling and observations of melting ice. J. Atmos. Sci., 47, 549564, https://doi.org/10.1175/1520-0469(1990)047<0549:MRMAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C. R., 2012: Vertical air motion retrieved from dual-frequency profiler observations. J. Atmos. Oceanic Technol., 29, 14711480, https://doi.org/10.1175/JTECH-D-11-00176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, J. K., and J. Vivekanandan, 2007: Sources of error in dual-wavelength radar remote sensing of cloud liquid water content. J. Atmos. Oceanic Technol., 24, 13171336, https://doi.org/10.1175/JTECH2042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41, 16481661, https://doi.org/10.1175/1520-0469(1984)041<1648:FFTSOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. P. Richardson, P. M. Markowski, E. N. Rasmussen, D. W. Burgess, L. J. Wicker, and H. B. Bluestein, 2012: The Second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170, https://doi.org/10.1175/BAMS-D-11-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., V. M. Melnikov, and A. V. Ryzhkov, 2006: Correlation coefficients between horizontally and vertically polarized returns from ground clutter. J. Atmos. Oceanic Technol., 23, 381394, https://doi.org/10.1175/JTECH1856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 812 214 17
PDF Downloads 1156 219 17