Seasonal Forecasting of Onset of Summer Rains over South Africa

J. V. Ratnam Application Laboratory, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by J. V. Ratnam in
Current site
Google Scholar
PubMed
Close
,
Takeshi Doi Application Laboratory, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Takeshi Doi in
Current site
Google Scholar
PubMed
Close
,
Willem A. Landman Department of Geography, Geoinformatics and Meteorology, University of Pretoria, South Africa

Search for other papers by Willem A. Landman in
Current site
Google Scholar
PubMed
Close
, and
Swadhin K. Behera Application Laboratory, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Swadhin K. Behera in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, we attempted to forecast the onset of summer rains over South Africa using seasonal precipitation forecasts generated by the Scale Interaction Experiment–Frontier Research Center for Global Change, version 2 (SINTEX-F2), seasonal forecasting system. The precipitation forecasts of the 12-member SINTEX-F2 system, initialized on 1 August and covering the period 1998–2015, were used for the study. The SINTEX-F2 forecast precipitation was also downscaled using dynamical and statistical techniques to improve the spatial and temporal representation of the forecasts. The Weather Research and Forecasting (WRF) Model with two cumulus parameterization schemes was used to dynamically downscale the SINTEX-F2 forecasts. The WRF and SINTEX-F2 precipitation forecasts were corrected for biases using a linear scaling method with a 31-day moving window. The results indicate the onset dates derived from the raw and bias-corrected model precipitation forecasts to have realistic spatial distribution over South Africa. However, the forecast onset dates have root-mean-square errors of more than 30 days over most parts of South Africa except over the northeastern province of Limpopo and over the Highveld region of Mpumalanga province, where the root-mean-square errors are about 10–15 days. The WRF Model with Kain–Fritsch cumulus scheme (bias-corrected SINTEX-F2) has better performance in forecasting the onset dates over Limpopo (the Highveld region) compared to other models, thereby indicating the forecast of onset dates over different regions of South Africa to be model dependent. The results of this study are important for improving the forecast of onset dates over South Africa.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. V. Ratnam, jvratnam@jamstec.go.jp

Abstract

In this study, we attempted to forecast the onset of summer rains over South Africa using seasonal precipitation forecasts generated by the Scale Interaction Experiment–Frontier Research Center for Global Change, version 2 (SINTEX-F2), seasonal forecasting system. The precipitation forecasts of the 12-member SINTEX-F2 system, initialized on 1 August and covering the period 1998–2015, were used for the study. The SINTEX-F2 forecast precipitation was also downscaled using dynamical and statistical techniques to improve the spatial and temporal representation of the forecasts. The Weather Research and Forecasting (WRF) Model with two cumulus parameterization schemes was used to dynamically downscale the SINTEX-F2 forecasts. The WRF and SINTEX-F2 precipitation forecasts were corrected for biases using a linear scaling method with a 31-day moving window. The results indicate the onset dates derived from the raw and bias-corrected model precipitation forecasts to have realistic spatial distribution over South Africa. However, the forecast onset dates have root-mean-square errors of more than 30 days over most parts of South Africa except over the northeastern province of Limpopo and over the Highveld region of Mpumalanga province, where the root-mean-square errors are about 10–15 days. The WRF Model with Kain–Fritsch cumulus scheme (bias-corrected SINTEX-F2) has better performance in forecasting the onset dates over Limpopo (the Highveld region) compared to other models, thereby indicating the forecast of onset dates over different regions of South Africa to be model dependent. The results of this study are important for improving the forecast of onset dates over South Africa.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. V. Ratnam, jvratnam@jamstec.go.jp
Save
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX, and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709, https://doi.org/10.1002/qj.49711247308.

    • Search Google Scholar
    • Export Citation
  • Boulard, D., and Coauthors, 2017: Bias correction of dynamically downscaled precipitation to compute soil water deficit for explaining year-to-year variation of tree growth over northeastern France. Agric. For. Meteor., 232, 247264, https://doi.org/10.1016/j.agrformet.2016.08.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyard-Micheau, J., P. Camberlin, N. Philippon, and V. Moron, 2013: Regional-scale rainy season onset detection: A new approach based on multivariate analysis. J. Climate, 26, 89168928, https://doi.org/10.1175/JCLI-D-12-00730.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crétat, J., C. Macron, B. Pohl, and Y. Richard, 2011: Quantifying internal variability in a regional climate model: A case study for Southern Africa. Climate Dyn., 37, 13351356, https://doi.org/10.1007/s00382-011-1021-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diallo, I., F. Giorgi, S. Sukumaran, F. Stordal, and G. Giuliani, 2015: Evaluation of RegCM4 driven by CAM4 over Southern Africa: Mean climatology, interannual variability and daily extremes of wet season temperature and precipitation. Theor. Appl. Climatol., 121, 749766, https://doi.org/10.1007/s00704-014-1260-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doi, T., S. K. Behera, and T. Yamagata, 2016: Improved seasonal prediction using the SINTEX-F2 coupled model. J. Adv. Model. Earth Syst., 8, 18471867, https://doi.org/10.1002/2016MS000744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doi, T., A. Storto, S. K. Behera, A. Navarra, and T. Yamagata, 2017: Improved prediction of the Indian Ocean dipole mode by use of subsurface ocean observations. J. Climate, 30, 79537970, https://doi.org/10.1175/JCLI-D-16-0915.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunning, C. M., E. Black, and R. Allan, 2016: The onset and cessation of seasonal rainfall over Africa. J. Geophys. Res. Atmos., 121, 11 40511 424, https://doi.org/10.1002/2016JD025428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and L. Mearns, 1999: Regional climate modeling revisited: An introduction to the special issue. J. Geophys. Res., 104, 63356352, https://doi.org/10.1029/98JD02072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansingo, K., and C. J. C. Reason, 2008: Modeling the atmospheric response to SST dipole patterns in the south Indian Ocean with regional climate model. Meteor. Atmos. Phys., 100, 3752, https://doi.org/10.1007/s00703-008-0294-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for bulk parameterization of cloud and precipitation. Mon. Wea. Rev., 132, 103120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multiscale Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joubert, A. M., J. J. Katzfey, J. L. McGregor, and K. C. Nguyan, 1999: Simulating midsummer climate over southern Africa using a nested regional climate model. J. Geophys. Res., 104, 19 01519 025, https://doi.org/10.1029/1999JD900256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kgatuke, M. M., W. A. Landman, A. Beraki, and M. P. Mbedzi, 2008: The internal variability of the RegCM3 over South Africa. Int. J. Climatol., 28, 505520, https://doi.org/10.1002/joc.1550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landman, W. A., and S. J. Mason, 1999: Operational long-lead prediction of South African rainfall using canonical correlation analysis. Int. J. Climatol., 19, 10731090, https://doi.org/10.1002/(SICI)1097-0088(199908)19:10<1073::AID-JOC415>3.0.CO;2-J.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landman, W. A., M. M. Kgatuk, M. Mbedzi, A. Beraki, A. Bartman, and A. du Piesanie, 2009: Performance comparison of some dynamical and empirical downscaling methods for South Africa from a seasonal climate modelling perspective. Int. J. Climatol., 29, 15351549, https://doi.org/10.1002/joc.1766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landman, W. A., D. DeWitt, D.-E. Lee, A. Beraki, and D. Lötter, 2012: Seasonal rainfall prediction skill over South Africa: One- versus two-tiered forecasting systems. Wea. Forecasting, 27, 489501, https://doi.org/10.1175/WAF-D-11-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., A. Buishand, and W. Van Deursen, 2007: Estimates of future discharges of the river Rhine using to scenario methodologies: Direct versus delta approach. Hydrol. Earth Syst. Sci., 11, 11451159, https://doi.org/10.5194/hess-11-1145-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKellar, N. C., M. A. Tadros, and B. C. Hewitson, 2009: Effects of vegetation map change in MM5 simulations of southern Africa’s summer climate. Int. J. Climatol., 29, 885898, https://doi.org/10.1002/joc.1754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacLeod, D., 2018: Seasonal predictability of onset and cessation of east African rains. Wea. Climate Extremes, 21, 2735, https://doi.org/10.1016/j.wace.2018.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace Rep. 27, 209 pp.

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the long wave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moalafhi, D. B., J. P. Evans, and A. Sharma, 2017: Influence of reanalysis datasets on dynamically downscaling of recent past. Climate Dyn., 49, 12391255, https://doi.org/10.1007/s00382-016-3378-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeletsi, M. E., S. Walker, and W. A. Landman, 2011: ENSO and implications on rainfall characteristics with reference to maize production in the Free State province of South Africa. Phys. Chem. Earth, 36, 715726, https://doi.org/10.1016/j.pce.2011.07.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikulin, G., and Coauthors, 2012: Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J. Climate, 25, 60576078, https://doi.org/10.1175/JCLI-D-11-00375.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novella, N. S., and W. M. Thiaw, 2013: African rainfall climatology version 2 for Famine Early Warning Systems. J. Appl. Meteor. Climatol., 52, 588606, https://doi.org/10.1175/JAMC-D-11-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phakula, S., W. A. Landman, and A. F. Beraki, 2018: Forecasting seasonal rainfall characteristics and onset months over South Africa. Int. J. Climatol., 38, e889e900, https://doi.org/10.1002/joc.5417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pradhan, M., A. Suryachandra Rao, A. Srivastava, A. Dakate, K. Salunke, and K. S. Shameera, 2017: Prediction of Indian summer-monsoon onset variability: A season in advance. Sci. Rep., 7, 14 229, https://doi.org/10.1038/s41598-017-12594-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratna, S. B., J. V. Ratnam, S. K. Behera, C. J. deW. Rautenbach, T. Ndarana, K. Takahashi, and T. Yamagata, 2014: Performance assessment of three convective parameterization schemes in WRF for downscaling summer rainfall over South Africa. Climate Dyn., 42, 29312953, https://doi.org/10.1007/s00382-013-1918-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratnam, J. V., S. K. Behera, Y. Masumoto, K. Takahashi, and T. Yamagata, 2012: A simple regional coupled model experiment for summer-time climate simulation over southern Africa. Climate Dyn., 39, 22072217, https://doi.org/10.1007/s00382-011-1190-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratnam, J. V., and Coauthors, 2013: Dynamical downscaling of austral summer climate forecasts over southern Africa using a regional coupled model. J. Climate, 26, 60156032, https://doi.org/10.1175/JCLI-D-12-00645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratnam, J. V., Y. Morioka, S. K. Behera, and T. Yamgata, 2015: A model study of regional air–sea interaction in the austral summer precipitation over southern Africa. J. Geophys. Res. Atmos., 120, 23422357, https://doi.org/10.1002/2014JD022154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratnam, J. V., S. K. Behera, T. Doi, S. B. Ratna, and W. A. Landman, 2016: Improvements to the WRF seasonal hindcasts over South Africa by bias correcting the driving SINTEX-F2v CGCM fields. J. Climate, 29, 28152829, https://doi.org/10.1175/JCLI-D-15-0435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratnam, J. V., S. K. Behera, R. Krishnan, T. Doi, and S. B. Ratna, 2017: Sensitivity of Indian summer monsoon simulation to physical parameterization schemes in the WRF model. Climate Res., 74, 4366, https://doi.org/10.3354/cr01484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., S. Hachigonta, and R. F. Phaladi, 2005: Interannual variability in rainy season characteristics over the Limpopo region of southern Africa. Int. J. Climatol., 25, 18351853, https://doi.org/10.1002/joc.1228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Max-Planck-Institut fur Meteorologie Rep. 349, 127 pp., https://www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_scirep_349.pdf.

  • Sasaki, W., K. J. Richards, and J.-J. Luo, 2012: Role of vertical mixing originating from small vertical scale structures above and within the equatorial thermocline in an OGCM. Ocean Modell., 57-58, 2942, https://doi.org/10.1016/j.ocemod.2012.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://dx.doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Sylla, M. B., F. Giorgi, E. Coppola, and L. Mariotti, 2013: Uncertainties in daily rainfall over Africa: Assessment of gridded observation products and evaluation of a regional climate model simulation. Int. J. Climatol., 33, 18051817, https://doi.org/10.1002/joc.3551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tadross, M. A., B. C. Hewitson, and M. T. Usman, 2005: The interannual variability of the onset of the maize growing season over South Africa and Zimbabwe. J. Climate, 18, 33563372, https://doi.org/10.1175/JCLI3423.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tadross, M. A., W. J. Gutowski, B. C. Hewitson, C. Jack, and M. New, 2006: MM5 simulations of interannual change and the diurnal cycle of southern African regional climate. Theor. Appl. Climatol., 86, 6380, https://doi.org/10.1007/s00704-005-0208-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Themeβl, M., A. Gobiet, and A. Leuprecht, 2011: Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol., 31, 15311544, https://doi.org/10.1002/joc.2168.

    • Search Google Scholar
    • Export Citation
  • Vellinga, M., A. Arribas, and R. Graham, 2013: Seasonal forecasts for regional onset of the West African monsoon. Climate Dyn., 40, 30473070, https://doi.org/10.1007/s00382-012-1520-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcke, R. A. I., T. Mendlik, and A. Gobiet, 2013: Multi-variable error correction of regional climate models. Climatic Change, 120, 871887, https://doi.org/10.1007/s10584-013-0845-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 712 101 8
PDF Downloads 343 64 6