Insight into the Thermodynamic Structure of Blowing-Snow Layers in Antarctica from Dropsonde and CALIPSO Measurements

Stephen P. Palm Science Systems and Applications, Inc., Lanham, Maryland

Search for other papers by Stephen P. Palm in
Current site
Google Scholar
PubMed
Close
,
Yuekui Yang NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Yuekui Yang in
Current site
Google Scholar
PubMed
Close
,
Vinay Kayetha Science Systems and Applications, Inc., Lanham, Maryland

Search for other papers by Vinay Kayetha in
Current site
Google Scholar
PubMed
Close
, and
Julien P. Nicolas Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio

Search for other papers by Julien P. Nicolas in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Blowing snow is a frequent and widespread phenomenon over most of Antarctica. The transport and sublimation of blowing snow are important for the mass balance of the Antarctic ice sheet, and the latter is a major contributor to the hydrological cycle in high-latitude regions. Although much is known about blowing snow from surface observations, knowledge of the thermodynamic structure of deep (>50 m) blowing-snow layers is lacking. Here, dropsonde measurements are used to investigate the temperature, moisture, and wind structure of deep blowing-snow layers over Antarctica. The temperature lapse rate within the blowing-snow layer is at times close to dry adiabatic and is on average between dry and moist adiabatic. Initiation of blowing snow causes the surface temperature to increase to a degree proportional to the depth of the blowing-snow layer. The relative humidity with respect to ice is generally largest near the surface (but less than 100%) and decreases with height, reaching a minimum near the top of the layer. These findings are at odds with the generally accepted theory that blowing-snow sublimation will cool and eventually saturate the layer. The observations support the conclusion that high levels of wind-shear-induced turbulence cause mixing and entrainment of warmer air from above the blowing-snow layer, which suppresses humidity and produces the observed well-mixed temperature structure within the layer. The results may have important consequences for understanding the mass balance of the Antarctic ice sheet and the moisture budget of the atmosphere in high latitudes.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-18-0082.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephen Palm, stephen.p.palm@nasa.gov

Abstract

Blowing snow is a frequent and widespread phenomenon over most of Antarctica. The transport and sublimation of blowing snow are important for the mass balance of the Antarctic ice sheet, and the latter is a major contributor to the hydrological cycle in high-latitude regions. Although much is known about blowing snow from surface observations, knowledge of the thermodynamic structure of deep (>50 m) blowing-snow layers is lacking. Here, dropsonde measurements are used to investigate the temperature, moisture, and wind structure of deep blowing-snow layers over Antarctica. The temperature lapse rate within the blowing-snow layer is at times close to dry adiabatic and is on average between dry and moist adiabatic. Initiation of blowing snow causes the surface temperature to increase to a degree proportional to the depth of the blowing-snow layer. The relative humidity with respect to ice is generally largest near the surface (but less than 100%) and decreases with height, reaching a minimum near the top of the layer. These findings are at odds with the generally accepted theory that blowing-snow sublimation will cool and eventually saturate the layer. The observations support the conclusion that high levels of wind-shear-induced turbulence cause mixing and entrainment of warmer air from above the blowing-snow layer, which suppresses humidity and produces the observed well-mixed temperature structure within the layer. The results may have important consequences for understanding the mass balance of the Antarctic ice sheet and the moisture budget of the atmosphere in high latitudes.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-18-0082.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephen Palm, stephen.p.palm@nasa.gov

Supplementary Materials

    • Supplemental Materials (PDF 604 KB)
Save
  • Bintanja, R., 1998: The interaction between drifting snow and atmospheric turbulence. Ann. Glaciol., 26, 167173, https://doi.org/10.1017/S0260305500014750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., 2000: Snowdrift suspension and atmospheric turbulence. Part II: Results of model simulations. Bound.-Layer Meteor., 95, 369395, https://doi.org/10.1023/A:1002643921326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., 2001: Modelling snowdrift sublimation and its effect on the moisture budget of the atmospheric boundary layer. Tellus, 53A, 215232, https://doi.org/10.3402/tellusa.v53i2.12189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boylan, P., J. Wang, S. A. Cohn, T. Hultberg, and T. August, 2016: Identification and intercomparison of surface-based inversions over Antarctica from IASI, ERA-Interim, and Concordiasi dropsonde data. J. Geophys. Res. Atmos., 121, 90899104, https://doi.org/10.1002/2015JD024724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., 1989: Satellite analyses of Antarctic katabatic wind behavior. Bull. Amer. Meteor. Soc., 70, 738749, https://doi.org/10.1175/1520-0477(1989)070<0738:SAOAKW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, I., and Coauthors, 2013: Influence of persistent wind scour on the surface mass balance of Antarctica. Nat. Geosci., 6, 367371, https://doi.org/10.1038/ngeo1766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Déry, S. J., and M. K. Yau, 1999: A bulk blowing snow model. Bound.-Layer Meteor., 93, 237251, https://doi.org/10.1023/A:1002065615856.

  • Déry, S. J., P. A. Taylor, and J. Xiao, 1998: The thermodynamic effects of sublimating, blowing snow in the atmospheric boundary layer. Bound.-Layer Meteor., 89, 251283, https://doi.org/10.1023/A:1001712111718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frezzotti, M., C. Scarchilli, S. Becagli, M. Proposito, and S. Urbini, 2013: A synthesis of the Antarctic surface mass balance during the last 800 yr. Cryosphere, 7, 303319, http://doi.org/10.5194/tc-7-303-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallée, H., G. Guyomarc’h, and E. Brun, 2001: Impact of snow drift on the Antarctic ice sheet surface mass balance: Possible sensitivity to snow-surface properties. Bound.-Layer Meteor., 99, 119, https://doi.org/10.1023/A:1018776422809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallée, H., A. Trouvilliez, C. Agosta, C. Genthon, V. Favier, and F. Naaim-Bouvet, 2013: Transport of snow by the wind: A comparison between observations in Adélie Land, Antarctica, and simulations made with the regional climate model MAR. Bound.-Layer Meteor., 146, 133147, https://doi.org/10.1007/s10546-012-9764-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grazioli, J., J. Madeleine, H. Gallée, R. M. Forbes, C. Genthon, G. Krinner, and A. Bernea, 2017: Katabatic winds diminish precipitation contribution to the Antarctic ice mass balance. Proc. Natl. Acad. Sci. USA, 114, 10 85810 863, https://doi.org/10.1073/pnas.1707633114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, 7, www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf.

  • King, J. C., and J. Turner, 1997: Antarctic Meteorology and Climatology. Cambridge University Press, 424 pp.

    • Crossref
    • Export Citation
  • Kodama, Y., G. Wendler, and J. Gosink, 1985: The effect of blowing snow on katabatic winds in Antarctica. Ann. Glaciol., 6, 5962, https://doi.org/10.1017/S026030550000999X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenaerts, J. T. M., M. R. van den Broeke, S. J. Déry, E. van Meijgaard, W. J. van de Berg, S. P. Palm, and J. Sanz Rodrigo, 2012: Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation. J. Geophys. Res., 117, D05108, https://doi.org/10.1029/2011JD016145.

    • Search Google Scholar
    • Export Citation
  • Mahesh, A., R. Eager, J. R. Campbell, and J. D. Spinhirne, 2003: Observations of blowing snow at the South Pole. J. Geophys. Res., 108, 4707, https://doi.org/10.1029/2002JD003327.

    • Search Google Scholar
    • Export Citation
  • Mann, G. W., P. S. Anderson, and S. D. Mobbs, 2000: Profile measurements of blowing snow at Halley, Antarctica. J. Geophys. Res., 105, 24 49124 508, https://doi.org/10.1029/2000JD900247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., A. Paukkunen, H. Vomel, and S. J. Oltmans, 2004: Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements. J. Atmos. Oceanic Technol., 21, 13051327, https://doi.org/10.1175/1520-0426(2004)021<1305:DAVOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., H. Vömel, D. N. Whiteman, B. M. Lesht, F. J. Schmidlin, and F. Russo, 2006: Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation. J. Geophys. Res., 111, D09S10, https://doi.org/10.1029/2005JD006083.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., H. Vömel, D. N. Whiteman, and T. Leblanc, 2009: Accuracy assessment and correction of Vaisala RS92 radiosonde water vapor measurements. J. Geophys. Res., 114, D11305, https://doi.org/10.1029/2008JD011565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J., T. Oakley, H. Vömel, and W. Li, 2011: WMO intercomparisons of high quality radiosonde systems. WMO/TD-1580, Instruments and Observing Methods Rep. 107, 248 pp., https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-107_Yangjiang.pdf.

  • Ohata, T., S. Kobayashi, N. Ishikawa, and S. Kawaguchi, 1985: Structure of the katabatic winds at Mizuho Station, East Antarctic. J. Geophys. Res., 90, 10 65110 658, https://doi.org/10.1029/JD090iD06p10651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palm, S. P., Y. Yang, J. D. Spinhirne, and A. Marshak, 2011: Satellite remote sensing of blowing snow properties over Antarctica. J. Geophys. Res., 116, D16123, https://doi.org/10.1029/2011JD015828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palm, S. P., V. Kayetha, Y. Yang, and R. Pauly, 2017: Blowing snow sublimation and transport over Antarctica from 11 years of CALIPSO observations. Cryosphere, 11, 25552569, https://doi.org/10.5194/tc-11-2555-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palm, S. P., V. Kayetha and Y. Yang, 2018: Toward a satellite-derived climatology of blowing snow over Antarctica. J. Geophys. Res. Atmos., 123, 10 30110 313, https://doi.org/10.1029/2018JD028632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillpot, H. R., and J. W. Zillman, 1970: The surface temperature inversion over the Antarctic continent. J. Geophys. Res., 75, 41614169, https://doi.org/10.1029/JC075i021p04161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabier, F., and Coauthors, 2010: The Concordiasi project in Antarctica. Bull. Amer. Meteor. Soc., 91, 6986, https://doi.org/10.1175/2009BAMS2764.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabier, F., and Coauthors, 2013: The Concordiasi field experiment over Antarctica: First results from innovative atmospheric measurements. Bull. Amer. Meteor. Soc., 94, ES17ES20, https://doi.org/10.1175/BAMS-D-12-00005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Pergamon, 293 pp.

  • Scarchilli, C., M. Frezzotti, P. Grigioni, L. De Silvestri, L. Agnoletto, and S. Dolci, 2010: Extraordinary blowing snow transport events in East Antarctica. Climate Dyn., 34, 11951206, http://doi.org/10.1007/s00382-009-0601-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., Y. Kodama, and G. Wendler, 1986: Observational study of the atmospheric boundary layer over Antarctica. J. Climate Appl. Meteor., 25, 641651, https://doi.org/10.1175/1520-0450(1986)025<0641:OSOTAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stearns, C. R., and G. Wendler, 1988: Research results from Antarctic automatic weather stations. Rev. Geophys., 26, 4561, https://doi.org/10.1029/RG026i001p00045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 2009: An Introduction to Boundary Layer Meteorology. Springer, 670 pp.

  • Tabler, R. D., 1975: Estimating the transport and evaporation of blowing snow. Snow Management on the Great Plains, Great Plains Agricultural Council Publ. 73, University of Nebraska, 85–105.

  • Takahashi, S., 1985: Characteristics of drifting snow at Mizuho station, Antarctica. Ann. Glaciol., 6, 7175, https://doi.org/10.1017/S0260305500010028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomasi, C., and Coauthors, 2006: Characterization of the atmospheric temperature and moisture conditions above Dome C (Antarctica) during austral summer and fall months. J. Geophys. Res., 111, D20305, http://doi.org/10.1029/2005JD006976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaisala, 2013: Vaisala radiosonde RS92-SGP data sheet. Vaisala, Inc., https://www.vaisala.com/sites/default/files/documents/RS92SGP-Datasheet-B210358EN-F-LOW.pdf.

  • Wamser, G., and V. Lykossov, 1995: On the friction velocity during blowing snow. Contrib. Atmos. Phys., 68 (1), 8594.

  • Wang, J., T. Hock, S. A. Cohn, C. Martin, N. Potts, T. Reale, B. Sun, and F. Tilley, 2013: Unprecedented upper-air dropsonde observations over Antarctica from the 2010 Concordiasi Experiment: Validation of satellite-retrieved temperature profiles. Geophys. Res. Lett., 40, 12311236, https://doi.org/10.1002/grl.50246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, https://doi.org/10.1175/2009JTECHA1281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., S. P. Palm, A. Marshak, H. Yu, and Q. Fu, 2014: First satellite detected perturbations of outgoing longwave radiation associated with blowing snow events over Antarctica. Geophys. Res. Lett., 41, 730735, https://doi.org/10.1002/2013GL058932.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 461 117 12
PDF Downloads 477 99 8