Summer Covariability of Surface Climate for Renewable Energy across the Contiguous United States: Role of the North Atlantic Subtropical High

Kenji Doering Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York

Search for other papers by Kenji Doering in
Current site
Google Scholar
PubMed
Close
and
Scott Steinschneider Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York

Search for other papers by Scott Steinschneider in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the joint spatiotemporal variability of summertime climate linked to renewable energy sources (precipitation and streamflow, wind speeds, and insolation) and energy demand drivers (temperature, relative humidity, and a heat index) across the contiguous United States (CONUS) between 1948 and 2015. Canonical correlation analysis is used to identify the primary modes of joint variability between wind speeds and precipitation and related patterns of the other hydrometeorological variables. The first two modes exhibit a pan-U.S. dipole with lobes in the eastern and central CONUS. Composite analysis shows that these modes are directly related to the displacement of the western ridge of the North Atlantic subtropical high (NASH), suggesting that a single, large-scale feature of atmospheric circulation drives much of the large-scale climate covariability related to summertime renewable energy supply and demand across the CONUS. The impacts of this climate feature on the U.S. energy system are shown more directly by examining changes in surface climate variables at existing and potential sites of renewable energy infrastructure and locations of high energy demand. Also, different phases of the NASH are related to concurrent and lagged modes of oceanic and atmospheric climate variability in the Pacific and Atlantic Ocean basins, with results suggesting that springtime climate over both oceans may provide some potential to predict summer variability in the NASH and its associated surface climate. The implications of these findings for the impacts of climate variability and change on integrated renewable energy systems over the CONUS are discussed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Scott Steinschneider, ss3378@cornell.edu

Abstract

This study examines the joint spatiotemporal variability of summertime climate linked to renewable energy sources (precipitation and streamflow, wind speeds, and insolation) and energy demand drivers (temperature, relative humidity, and a heat index) across the contiguous United States (CONUS) between 1948 and 2015. Canonical correlation analysis is used to identify the primary modes of joint variability between wind speeds and precipitation and related patterns of the other hydrometeorological variables. The first two modes exhibit a pan-U.S. dipole with lobes in the eastern and central CONUS. Composite analysis shows that these modes are directly related to the displacement of the western ridge of the North Atlantic subtropical high (NASH), suggesting that a single, large-scale feature of atmospheric circulation drives much of the large-scale climate covariability related to summertime renewable energy supply and demand across the CONUS. The impacts of this climate feature on the U.S. energy system are shown more directly by examining changes in surface climate variables at existing and potential sites of renewable energy infrastructure and locations of high energy demand. Also, different phases of the NASH are related to concurrent and lagged modes of oceanic and atmospheric climate variability in the Pacific and Atlantic Ocean basins, with results suggesting that springtime climate over both oceans may provide some potential to predict summer variability in the NASH and its associated surface climate. The implications of these findings for the impacts of climate variability and change on integrated renewable energy systems over the CONUS are discussed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Scott Steinschneider, ss3378@cornell.edu
Save
  • Abhishek, A., J. Y. Lee, T. C. Keener, and Y. J. Yang, 2010: Long-term wind speed variations for three midwestern U.S. cities. J. Air Waste Manag. Assoc., 60, 10571064, https://doi.org/10.3155/1047-3289.60.9.1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahn, K.-H., R. Palmer, and S. Steinschneider, 2017: A hierarchical Bayesian model for regionalized seasonal forecasts: Application to low flows in the northeastern United States. Water Resour. Res., 53, 503521, https://doi.org/10.1002/2016WR019605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., S. Nigam, and E. H. Berbery, 2001: ENSO, Pacific decadal variability, and U.S. summertime precipitation, drought, and stream flow. J. Climate, 14, 21052128, https://doi.org/10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartos, M., M. Chester, N. Johnson, B. Gorman, D. Eisenberg, I. Linkov, and M. Bates, 2016: Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States. Environ. Res. Lett., 11, 114008, https://doi.org/10.1088/1748-9326/11/11/114008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bett, P. E., and H. E. Thornton, 2016: The climatological relationships between wind and solar energy supply in Britain. Renewable Energy, 87, 96110, https://doi.org/10.1016/j.renene.2015.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bichet, A., M. Wild, D. Folini, and C. Schär, 2012: Causes for decadal variations of wind speed over land: Sensitivity studies with a global climate model. Geophys. Res. Lett., 39, L11701, https://doi.org/10.1029/2012GL051685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloomfield, H., D. J. Brayshaw, L. C. Shaffrey, P. J. Coker, and H. E. Thornton, 2018: The changing sensitivity of power systems to meteorological drivers: A case study of Great Britain. Environ. Res. Lett., 13, 054028, https://doi.org/10.1088/1748-9326/aabff9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cardell, J. B., and C. L. Anderson, 2015: A flexible dispatch margin for wind integration. IEEE Trans. Power Syst., 30, 15011510, https://doi.org/10.1109/TPWRS.2014.2337662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, E., and S. Steinschneider, 2018: Hydroclimatological drivers of extreme floods on Lake Ontario. Water Resour. Res., 54, 44614478, https://doi.org/10.1029/2018WR022908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castronuovo, E. D., and J. A. P. Lopes, 2004: On the optimization of the daily operation of a wind-hydro power plant. IEEE Trans. Power Syst., 19, 15991606, https://doi.org/10.1109/TPWRS.2004.831707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, M. K., J. D. Eichman, F. Mueller, and S. Samuelsen, 2013: Buffering intermittent renewable power with hydroelectric generation: A case study in California. Appl. Energy, 112, 111, https://doi.org/10.1016/j.apenergy.2013.04.092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., and P. Xie, 2008: CPC unified gauge-based analysis of global daily precipitation. Western Pacific Geophysics Meeting, Cairns, QLD, Australia, Amer. Geophys. Union, ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_CONUS/DOCU/Chen_et_al_2008_Daily_Gauge_Anal.pdf.

  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Cherry, J., H. Cullen, M. Visbeck, A. Small, and C. Uvo, 2005: Impacts of the North Atlantic Oscillation on Scandinavian hydropower production and energy markets. Water Resour. Manage., 19, 673691, https://doi.org/10.1007/s11269-005-3279-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cropper, T., E. Hanna, M. A. Valente, and T. Jonsson, 2015: A daily Azores–Iceland North Atlantic Oscillation index back to 1850. Geosci. Data J., 2, 1224, https://doi.org/10.1002/gdj3.23.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., B. P. Hayden, D. A. Gay, W. L. Phillips, and G. V. Jones, 1997: The North Atlantic subtropical anticyclone. J. Climate, 10, 728744, https://doi.org/10.1175/1520-0442(1997)010<0728:TNASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diem, J. E., 2006: Synoptic-scale controls of summer precipitation in the southeastern United States. J. Climate, 19, 613621, https://doi.org/10.1175/JCLI3645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diem, J. E., 2013: Influences of the Bermuda high and atmospheric moistening on changes in summer rainfall in the Atlanta, Georgia region, USA. Int. J. Climatol., 33, 160172, https://doi.org/10.1002/joc.3421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DNV GL, 2016: Whither the winds in 2015? Analysis of the anomalously low winds across the U.S. DNV GL Rep. 108917-R-01-A, https://www.dnvgl.com/publications/whither-the-winds-in-2015--96414.

  • Draxl, C., A. Clifon, B. M. Hodge, and J. McCaa, 2015: The Wind Integration National Dataset (WIND) toolkit. Appl. Energy, 151, 355366, https://doi.org/10.1016/j.apenergy.2015.03.121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunn, B., H. Kamath, and J.-M. Tarascon, 2011: Electrical energy storage for the grid: A battery of choices. Science, 334, 928935, https://doi.org/10.1126/science.1212741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EIA, 2015: California’s continued drought, reduced snowpack mean lower hydropower output. Energy Information Administration, https://www.eia.gov/todayinenergy/detail.php?id=20732.

  • EIA, 2017: Electric power monthly report (annual summary 2005–2017). Energy Information Administration, https://www.eia.gov/electricity/monthly/.

  • EIA, 2018: U.S. Energy Mapping System. Energy Information Administration, https://www.eia.gov/state/maps.php?v=Electricity.

  • Ely, C. R., D. J. Brayshaw, J. Methven, J. Cox, and O. Pearce, 2013: Implications of the North Atlantic Oscillation for a UK–Norway renewable power system. Energy Policy, 62, 14201427, https://doi.org/10.1016/j.enpol.2013.06.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engeland, K., M. Borga, J. Creutin, B. François, M. Ramos, and J. Vidal, 2017: Space-time variability of climate variables and intermittent renewable electricity production—A review. Renewable Sustainable Energy Rev., 79, 600617, https://doi.org/10.1016/j.rser.2017.05.046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ewen, T., S. Brönnimann, and J. Annis, 2008: An extended Pacific–North American index from upper-air historical data back to 1922. J. Climate, 21, 12951308, https://doi.org/10.1175/2007JCLI1951.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falcone, J. A., D. M. Carlisle, D. M. Wolock, and M. R. Meador, 2010: GAGES: A stream gage database for evaluating natural and altered flow conditions in the conterminous United States. Ecology, 91, 621622, https://doi.org/10.1890/09-0889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., and H. van den Dool, 2008: A global monthly land surface air temperature analysis for 1948–present. J. Geophys. Res., 113, G04016, https://doi.org/10.1029/2008JG000723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernández-González, S., S. Del Río, A. Castro, A. Penas, M. Fernández-Raga, A. I. Calvo, and R. Fraile, 2012: Connection between NAO, weather types and precipitation in Leòn, Spain (1948–2008). Int. J. Climatol., 32, 21812196, https://doi.org/10.1002/joc.2431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fertig, E., J. Apt, P. Jaramillo, and W. Katzenstein, 2012: The effect of long-distance interconnection on wind power variability. Environ. Res. Lett., 7, 034017, https://doi.org/10.1088/1748-9326/7/3/034017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves and air–sea feedback in the middle latitudes. Rev. Geophys., 23, 357390, https://doi.org/10.1029/RG023i004p00357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Ortega, E., L. Hermida, R. Hierro, A. Merino, E. Gascón, S. Fernández-González, J. L. Sànchez, and L. López, 2014: Anomalies, trends and variability in atmospheric fields related to hailstorms in north-eastern Spain. Int. J. Climatol., 34, 32513263, https://doi.org/10.1002/joc.3910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gastineau, G., and C. Frankignoul, 2015: Influence of the North Atlantic SST variability on the atmospheric circulation during the twentieth century. J. Climate, 28, 13961416, https://doi.org/10.1175/JCLI-D-14-00424.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., A. Drumond, R. Nieto, R. M. Trigo, and A. Stohl, 2010: On the origin of continental precipitation. Geophys. Res. Lett., 37, L13804, https://doi.org/10.1029/2010GL043712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • González, I., S. Déjean, P. G. P. Martin, and A. Baccini, 2008: CCA: An R package to extend canonical correlation analysis. J. Stat. Softw., 23, 114, https://doi.org/10.18637/jss.v023.i12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodrich, G. B., 2007: Influence of the Pacific decadal oscillation on winter precipitation and drought during years of neutral ENSO in the western United States. Wea. Forecasting, 22, 116124, https://doi.org/10.1175/WAF983.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hadjerioua, B., Y. Wei, and S.-C. Kao, 2012: An assessment of energy potential at non-powered dams in the United States. Oak Ridge National Laboratory Rep., 37 pp., https://doi.org/10.2172/1039957.

    • Crossref
    • Export Citation
  • Hamlington, B. D., P. E. Hamlington, S. G. Collins, S. R. Alexander, and K.-Y. Kim, 2015: Effects of climate oscillations on wind resource variability in the United States. Geophys. Res. Lett., 42, 145152, https://doi.org/10.1002/2014GL062370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirth, L., 2016: The benefits of flexibility: The value of wind energy with hydropower. Appl. Energy, 181, 210223, https://doi.org/10.1016/j.apenergy.2016.07.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, M., U. Lall, and E. R. Cook, 2016: Can a paleodrought record be used to reconstruct streamflow? A case study for the Missouri River basin. Water Resour. Res., 52, 51955212, https://doi.org/10.1002/2015WR018444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., P. Thorne, T. Smith, W. Liu, J. Lawrimore, V. Banzon, H. Zhang, T. Peterson, and M. Menne, 2016: Further exploring and quantifying uncertainties for Extended Reconstructed Sea Surface Temperature (ERSST) version 4 (v4). J. Climate, 29, 31193142, https://doi.org/10.1175/JCLI-D-15-0430.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jerez, S., and R. M. Trigo, 2013: Time-scale and extent at which large-scale circulation modes determine the wind and solar potential in the Iberian Peninsula. Environ. Res. Lett., 8, 044035, https://doi.org/10.1088/1748-9326/8/4/044035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jerez, S., R. M. Trigo, S. M. Vicente-Serrano, D. Pozo-Vázquez, R. Lorente-Plazas, J. Lorenzo-Lacruz, F. Santos-Alamillos, and J. P. Montávez, 2013: The impact of the North Atlantic Oscillation on renewable energy resources in southwestern Europe. J. Appl. Meteor. Climatol., 52, 22042225, https://doi.org/10.1175/JAMC-D-12-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kempton, W., F. M. Pimenta, D. E. Veron, B. A. Colle, 2010: Electric power from offshore wind via synoptic-scale interconnection. Proc. Natl. Acad. Sci. USA, 107, 72407245, https://doi.org/10.1073/pnas.0909075107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirchner-Bossi, N., R. García-Herrera, L. Prieto, and R. M. Trigo, 2015: A long-term perspective of wind power output variability. Int. J. Climatol., 35, 26352646, https://doi.org/10.1002/joc.4161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 22332256, https://doi.org/10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., R. Seager, M. Ting, N. Naik, and J. Nakamura, 2010: Mechanisms of tropical Atlantic SST influence on North American precipitation variability. J. Climate, 23, 56105628, https://doi.org/10.1175/2010JCLI3172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leurgans, E., A. Moyeed, and B. Silverman, 1993: Canonical correlation analysis when the data are curves. J. Roy. Stat. Soc., 55A, 725740.

    • Search Google Scholar
    • Export Citation
  • Li, L., W. Li, and Y. Kushnir, 2012: Variation of the North Atlantic subtropical high western ridge and its implication to Southeastern US summer precipitation. Climate Dyn., 39, 14011412, https://doi.org/10.1007/s00382-011-1214-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., R. W. Schmidt, and C. C. Ummenhofer, 2017: The role of the subtropical North Atlantic water cycle in recent US extreme precipitation events. Climate Dyn., 50, 12911305, https://doi.org/10.1007/s00382-017-3685-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., L. Li, R. Fu, Y. Deng, and H. Wang, 2011: Changes to the North Atlantic subtropical high and its role in the intensification of summer rainfall variability in the southeastern United States. J. Climate, 24, 14991506, https://doi.org/10.1175/2010JCLI3829.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., L. Li, M. Ting, and Y. Liu, 2012: Intensification of Northern Hemisphere subtropical highs in a warming climate. Nat. Geosci., 5, 830834, https://doi.org/10.1038/ngeo1590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., S. Zhong, X. Bian, and W. E. Heilman, 2010: Climate and climate variability of the wind power resources in the Great Lakes region of the United States. J. Geophys. Res., 115, D18107, https://doi.org/10.1029/2009JD013415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part II: Parametric and structural uncertainty estimations. J. Climate, 28, 931951, https://doi.org/10.1175/JCLI-D-14-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., E. A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K. Andreadis, E. Maurer, and D. P. Lettenmaier, 2013: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, https://doi.org/10.1175/JCLI-D-12-00508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Coauthors, 2001: North Atlantic climate variability: Phenomena, impacts and mechanisms. Int. J. Climatol., 21, 18631898, https://doi.org/10.1002/joc.693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, E. L., A. K. Snover, A. F. Hamlet, B. Callahan, and D. Fluharty, 2000: Pacific Northwest regional assessment: The impacts of climate variability and climate change on the water resources of the Columbia River basin. J. Amer. Water Resour. Assoc., 36, 399420, https://doi.org/10.1111/j.1752-1688.2000.tb04277.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohammadi, K., and N. Goudarzi, 2018a: Association of direct normal irradiance with El Niño Southern Oscillation and its consequences on concentrated solar power production in the US Southwest. Appl. Energy, 212, 11261137, https://doi.org/10.1016/j.apenergy.2017.12.102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohammadi, K., and N. Goudarzi, 2018b: Study of inter-correlations of solar radiation, wind speed, and precipitation under the influence of El Niño Southern Oscillation (ENSO) in California. Renewable Energy, 120, 190200, https://doi.org/10.1016/j.renene.2017.12.069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monforti, H., T. Huld, K. Bódis, L. Vitalic, M. D’Isidoro, and R. Lacal-Arántegui, 2014: Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach. Renewable Energy, 63, 576586, https://doi.org/10.1016/j.renene.2013.10.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nobre, C. A., J. A. Marengo, M. E. Seluchi, L. A. Cuartas, and L. M. Alves, 2016: Some characteristics and impacts of the drought and water crisis in southeastern Brazil during 2014 and 2015. J. Water Resource Prot., 8, 252262, https://doi.org/10.4236/jwarp.2016.82022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and S. Li, 2002: North Atlantic SST forcing of the NAO and relationships with intrinsic hemispheric variability. Geophys. Res. Lett., 29, 1276, https://doi.org/10.1029/2001GL014043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piechota, T. C., and J. A. Dracup, 1996: Drought and regional hydrologic variation in the United States: Associations with the El Niño–Southern Oscillation. Water Resour. Res., 32, 13591373, https://doi.org/10.1029/96WR00353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ronalds, B. F., A. Wonhas, and A. Troccoli, 2014: A new era for energy and meteorology. Weather Matters for Energy, A. Troccoli, L. Dubus, and S. E. Haupt, Eds., Springer, 3–14.

    • Crossref
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryu, J., and K. Hayhoe, 2017: Observed and CMIP5 modeled influence of large-scale circulation on summer precipitation and drought in the south-central United States. Climate Dyn., 49, 42934310, https://doi.org/10.1007/s00382-017-3534-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santos-Alamillos, F. J., D. Pozo-Vazquez, J. A. Ruiz-Arias, V. Lara-Fanego, and J. Tovar-Pescador, 2012: Analysis of spatiotemporal balancing between wind and solar energy resources in the southern Iberian Peninsula. J. Appl. Meteor. Climatol., 51, 20052024, https://doi.org/10.1175/JAMC-D-11-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, and Coauthors, 2009: A U.S. CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. J. Climate, 22, 52515272, https://doi.org/10.1175/2009JCLI3060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and M. Hoerling, 2014: Atmosphere and ocean origins of North American droughts. J. Climate, 27, 45814606, https://doi.org/10.1175/JCLI-D-13-00329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Pederson, Y. Kushnir, J. Nakamura, and S. Jurburg, 2012: The 1960s drought and the subsequent shift to a wetter climate in the Catskill Mountains region of the New York City watershed. J. Climate, 25, 67216742, https://doi.org/10.1175/JCLI-D-11-00518.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Hoerling, S. Schubert, H. Wang, B. Lyon, A. Kumar, J. Nakamura, and N. Henderson, 2015: Causes of the 2011–14 California drought. J. Climate, 28, 69977024, https://doi.org/10.1175/JCLI-D-14-00860.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaner, M. R., S. J. Davis, N. S. Lewis, and K. Caldeira, 2018: Geophysical constraints on the reliability of solar and wind power in the United States. Energy Environ. Sci., 11, 914925, https://doi.org/10.1039/C7EE03029K.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sims, R., 2014: Renewable energy and climate change mitigation: An overview of the IPCC Special Report. Weather Matters for Energy, A. Troccoli, L. Dubus, and S. E. Haupt, Eds., Springer, 91–110.

    • Crossref
    • Export Citation
  • Smith, J. A., and M. L. Baeck, 2017: Strange floods: Downscaling simulations of the storms that produce them. 31st Conf. on Hydrology, Seattle, WA, Amer. Meteor. Soc., J2.3, https://ams.confex.com/ams/97Annual/webprogram/Paper313440.html.

  • SRB Science Team, 2010: REL3.0 SW monthly UTC NC Surface Radiation Budget (SRB) release 3.0: GEWEX shortwave monthly UTC data in 1 x 1 degree NetCDF format. NASA Atmospheric Science Data Center, accessed 7 March 2017, https://doi.org/10.5067/SRB/REL3.0_SW_MONTHLY_UTC_NC_L3.

    • Crossref
    • Export Citation
  • Steinschneider, S., and C. Brown, 2011: Influences of North Atlantic climate variability on low-flows in the Connecticut River basin. J. Hydrol., 409, 212224, https://doi.org/10.1016/j.jhydrol.2011.08.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinschneider, S., and C. Brown, 2012: Forecast-informed low-flow frequency analysis in a Bayesian framework for the northeastern United States. Water Resour. Res., 48, W10545, https://doi.org/10.1029/2012WR011860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinschneider, S., and U. Lall, 2016: Spatiotemporal structure of precipitation related to tropical moisture exports over the eastern United States and its relation to climate teleconnections. J. Hydrometeor., 17, 897913, https://doi.org/10.1175/JHM-D-15-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swain, D. L., D. E. Horton, D. Singh, and N. S. Diffenbaugh, 2016: Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California. Sci. Adv., 2, e1501344, https://doi.org/10.1126/sciadv.1501344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thibeault, J. M., and A. Seth, 2014: A framework for evaluating model credibility for warm-season precipitation in northeastern North America: A case study of CMIP5 simulations and projections. J. Climate, 27, 493510, https://doi.org/10.1175/JCLI-D-12-00846.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thibeault, J. M., and A. Seth, 2015: Toward the credibility of northeast United States summer precipitation projections in CMIP5 and NARCCAP simulations. J. Geophys. Res. Atmos., 120, 10 05010 073, https://doi.org/10.1002/2015JD023177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornton, H. E., A. A. Scaife, B. J. Hoskins, and D. J. Brayshaw, 2017: The relationship between wind power, electricity demand and winter weather patterns in Great Britain. Environ. Res. Lett., 12, 064017, https://doi.org/10.1088/1748-9326/aa69c6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, and P. A. Arkin, 1988: Origins of the 1988 North American drought. Science, 242, 16401645, https://doi.org/10.1126/science.242.4886.1640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. Census Bureau, 2015: USA major cities. Esri, http://www.arcgis.com/home/item.html?id=4e02a13f5ec6412bb56bd8d3dadd59dd.

  • Vazquez, S., S. M. Lukic, E. Galvan, L. G. Franquelo, and J. M. Carrasco, 2010: Energy storage systems for transport and grid applications. IEEE Trans. Ind. Electron., 57, 38813895, https://doi.org/10.1109/TIE.2010.2076414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinod, H., 1976: Canonical ridge and econometrics of joint production. J. Econom., 6, 129137, https://doi.org/10.1016/0304-4076(76)90010-5.

    • Search Google Scholar
    • Export Citation
  • Wang, C., and S. Lee, 2007: Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic hurricanes. Geophys. Res. Lett., 34, L02703, https://doi.org/10.1029/2006GL028579.

    • Search Google Scholar
    • Export Citation
  • Wang, C., S. Lee, and D. Enfield, 2008: Atlantic warm pool acting as a link between Atlantic multidecadal oscillation and Atlantic tropical cyclone activity. Geochem. Geophys. Geosyst., 9, Q05V03, https://doi.org/10.1029/2007GC001809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., S. Schubert, M. Suarez, and R. Koster, 2010: The physical mechanisms by which the leading patterns of SST variability impact U.S. precipitation. J. Climate, 23, 18151836, https://doi.org/10.1175/2009JCLI3188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S. Y., L. Hipps, R. R. Gillies, and J. H. Yoon, 2014: Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophys. Res. Lett., 41, 32203226, https://doi.org/10.1002/2014GL059748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, S., 2014: Quantifying the variability of wind energy. Wiley Interdiscip. Rev.: Energy Environ., 3, 330342, https://doi.org/10.1002/wene.95.