A Statistical Analysis of Hail Events and Their Environmental Conditions in China during 2008–15

Mingxin Li State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Mingxin Li in
Current site
Google Scholar
PubMed
Close
,
Da-Lin Zhang State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China, and Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Da-Lin Zhang in
Current site
Google Scholar
PubMed
Close
,
Jisong Sun State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Jisong Sun in
Current site
Google Scholar
PubMed
Close
, and
Qinghong Zhang Department of Atmospheric and Oceanic Sciences, Peking University, Beijing, China

Search for other papers by Qinghong Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An 8-yr (i.e., 2008–15) climatology of the spatiotemporal characteristics of hail events in China and their associated environmental conditions are examined using hail observations, L-band rawinsondes, and global reanalysis data. A total of 1003 hail events with maximum hail diameter (MHD) of greater than 5 mm are selected and then sorted into three hail-size bins. Hail events with the largest MHD bin correspond to the median vertical wind shear in the lowest 6-km layer (SHR6) of 21.6 m s−1, precipitable water (PW) of 34.8 mm, and convective available potential energy (CAPE) of 2192 J kg−1. Hail with different MHD bins share similar freezing-level heights (FLHs) of about 4000 m. The thickness of the hail growth zone is thinner for hail events with the largest MHD bin. Hail events with different MHD bins display seasonal variations associated with the summer monsoon; that is, the hail season starts in South China in spring and then shifts to North China in summer. Larger hail is mainly observed during the spring in South China before monsoon onset in the presence of an upper-level jet and a low-level southwesterly flow accounting for large SHR6 and PW. In contrast, smaller-MHD hailstorms occur mainly during the summer in North China when surface heating is high and the low-level southerly flow shifts northward with pronounced baroclinicity providing large CAPE and PW, moderate SHR6, and low FLH. Environmental CAPE and SHR6 for large hailstones in China are comparable in magnitude to those in the United States but larger than those in some European countries.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Da-Lin Zhang, dalin@umd.edu

Abstract

An 8-yr (i.e., 2008–15) climatology of the spatiotemporal characteristics of hail events in China and their associated environmental conditions are examined using hail observations, L-band rawinsondes, and global reanalysis data. A total of 1003 hail events with maximum hail diameter (MHD) of greater than 5 mm are selected and then sorted into three hail-size bins. Hail events with the largest MHD bin correspond to the median vertical wind shear in the lowest 6-km layer (SHR6) of 21.6 m s−1, precipitable water (PW) of 34.8 mm, and convective available potential energy (CAPE) of 2192 J kg−1. Hail with different MHD bins share similar freezing-level heights (FLHs) of about 4000 m. The thickness of the hail growth zone is thinner for hail events with the largest MHD bin. Hail events with different MHD bins display seasonal variations associated with the summer monsoon; that is, the hail season starts in South China in spring and then shifts to North China in summer. Larger hail is mainly observed during the spring in South China before monsoon onset in the presence of an upper-level jet and a low-level southwesterly flow accounting for large SHR6 and PW. In contrast, smaller-MHD hailstorms occur mainly during the summer in North China when surface heating is high and the low-level southerly flow shifts northward with pronounced baroclinicity providing large CAPE and PW, moderate SHR6, and low FLH. Environmental CAPE and SHR6 for large hailstones in China are comparable in magnitude to those in the United States but larger than those in some European countries.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Da-Lin Zhang, dalin@umd.edu
Save
  • Allen, J. T., 2017: Hail potential heating up. Nat. Climate Change, 7, 474475, https://doi.org/10.1038/nclimate3327.

  • Allen, J. T., and M. K. Tippett, 2015: The characteristics of United States hail reports: 1955–2014. Electron. J. Severe Storms Meteor., 10 (3), http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/149.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., D. J. Karoly, and G. A. Mills, 2011: A severe thunderstorm climatology for Australia and associated thunderstorm environments. Aust. Meteor. Oceanogr. J., 61, 143158, https://doi.org/10.22499/2.6103.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015: An empirical model relating U.S. monthly hail occurrence to large-scale meteorological environment. J. Adv. Model. Earth Syst., 7, 226243, https://doi.org/10.1002/2014MS000397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low-level jet. Mon. Wea. Rev., 96, 833850, https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brimelow, J., W. R. Burrows, and J. M. Hanesiak, 2017: The changing hail threat over North America in response to anthropogenic climate change. Nat. Climate Change, 7, 516522, https://doi.org/10.1038/nclimate3321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2009: Proximity soundings for Europe and the United States from reanalysis data. Atmos. Res., 93, 546553, https://doi.org/10.1016/j.atmosres.2008.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2013: Severe thunderstorms and climate change. Atmos. Res., 123, 129138, https://doi.org/10.1016/j.atmosres.2012.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67–68, 7394, https://doi.org/10.1016/S0169-8095(03)00045-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., A. R. Anderson, K. Riemann, I. Ebbers, and H. Flachs, 2007: Climatological aspects of convective parameters from the NCAR/NCEP reanalysis. Atmos. Res., 83, 294305, https://doi.org/10.1016/j.atmosres.2005.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and C. B. Blankenship, 2012: Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Climate, 25, 687703, https://doi.org/10.1175/JCLI-D-11-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., T. M. Smith, V. Lakshmanan, H. E. Brooks, and K. L. Ortega, 2012: An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 12351248, https://doi.org/10.1175/WAF-D-11-00151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, X., H. Xue, and Z. Meng, 2018: The effect of ice nuclei on a deep convective cloud in South China. Atmos. Res., 206, 112, https://doi.org/10.1016/j.atmosres.2018.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dennis, E. J., and M. R. Kumjian, 2017: The impact of vertical wind shear on hail growth in simulated supercells. J. Atmos. Sci., 74, 641663, https://doi.org/10.1175/JAS-D-16-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan, 70, 373396, https://doi.org/10.2151/jmsj1965.70.1B_373.

  • Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, https://doi.org/10.1007/s00703-005-0125-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and M. P. Kay, 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20, 577595, https://doi.org/10.1175/WAF866.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., Y. Chen, and Q. Zhang, 2014: Numerical simulations of spatial distributions and diurnal variations of low-level jets in China during early summer. J. Climate, 27, 57475767, https://doi.org/10.1175/JCLI-D-13-00571.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ekman, A. M. L., A. Engström, and C. Wang, 2007: The effect of aerosol composition and concentration on the development and anvil properties of a continental deep convective cloud. Quart. J. Roy. Meteor. Soc., 133, 14391452, https://doi.org/10.1002/qj.108.

    • Search Google Scholar
    • Export Citation
  • Fan, J., J. M. Comstock, and M. Ovchinnikov, 2010: The cloud condensation nuclei and ice nuclei effects on tropical anvil characteristics and water vapor of the tropical tropopause layer. Environ. Res. Lett., 5, 044005, https://doi.org/10.1088/1748-9326/5/4/044005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foote, G. B., 1984: A study of hail growth utilizing observed storm conditions. J. Climate Appl. Meteor., 23, 84101, https://doi.org/10.1175/1520-0450(1984)023<0084:ASOHGU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groenemeijer, P. H., and A. van Delden, 2007: Sounding-derived parameters associated with large hail and tornadoes in the Netherlands. Atmos. Res., 83, 473487, https://doi.org/10.1016/j.atmosres.2005.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A. W., and K. E. Sugden, 2014: Evaluation of sounding derived thermodynamic and wind-related parameters associated with large hail events. J. Electron. Severe Storms Meteor., 9 (5), http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/137.

    • Search Google Scholar
    • Export Citation
  • Kahraman, A., M. Kadioglu, and P. Markowski, 2017: Severe convective storm environments in Turkey. Mon. Wea. Rev., 145, 47114725, https://doi.org/10.1175/MWR-D-16-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and N. C. Knight, 2001: Hailstorms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 223–248.

    • Crossref
    • Export Citation
  • Kunz, M., and M. Puskeiler, 2010: High-resolution assessment of the hail hazard over complex terrain from radar and insurance data. Meteor. Z., 19, 427439, https://doi.org/10.1127/0941-2948/2010/0452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., Q. Zhang, and F. Zhang, 2016: Hail day frequency trends and associated atmospheric circulation patterns over China during 1960–2012. J. Climate, 29, 70277044, https://doi.org/10.1175/JCLI-D-15-0500.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., Q. Zhang, T. Zou, J. Lin, H. Kong, and Z. Ren, 2018: Climatology of hail frequency and size in China, 1980–2015. J. Appl. Meteor. Climatol., 57, 875887, https://doi.org/10.1175/JAMC-D-17-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q. G., and M. C. Tang, 1966: Climatological characteristics of hail in China (in Chinese). Acta Geogr. Sin., 32, 4865.

  • Liu, X., Y. Fu, Z. Cao, and S. Jin, 2018: Influence of ice nuclei parameterization schemes on the hail process. Adv. Meteor., 2018, 4204137, https://doi.org/10.1155/2018/4204137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, K., M. A. Alexander, G. Thompson, J. J. Barsugli, and J. D. Scott, 2012: Changes in hail and flood risk in high-resolution simulations over Colorado’s mountains. Nat. Climate Change, 2, 125131, https://doi.org/10.1038/nclimate1344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, L. J., J. D. Tuttle, and C. A. Knight, 1988: Airflow and hail growth in a severe northern high plains supercell. J. Atmos. Sci., 45, 736762, https://doi.org/10.1175/1520-0469(1988)045<0736:AAHGIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, S. P., 1983: The influence of storm flow structure on hail growth. J. Atmos. Sci., 40, 19651983, https://doi.org/10.1175/1520-0469(1983)040<1965:TIOSFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, S. P., 1987: The hybrid multicellular–supercellular storm—An efficient hail producer. Part II: General characteristics and implications for hail growth. J. Atmos. Sci., 44, 20602073, https://doi.org/10.1175/1520-0469(1987)044<2060:THMSEH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ni, X., Q. Zhang, C. Liu, X. Li, T. Zou, J. Lin, H. Kong, and Z. Ren, 2017: Decrease hail size in China since 1980. Sci. Rep., 7, 10913, https://doi.org/10.1038/s41598-017-11395-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., 2004: Large- and mesoscale features of meiyu–baiu front associated with intense rainfalls. The East Asian Summer Monsoon, C. P. Chang, Ed., World Scientific, 404–435.

    • Crossref
    • Export Citation
  • Púcik, T., P. Groenemeijer, D. Ryva, and M. Kolar, 2015: Proximity soundings of severe and nonsevere thunderstorms in central Europe. Mon. Wea. Rev., 143, 48054821, https://doi.org/10.1175/MWR-D-15-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, W., 2000: Dry/wet alternation and global monsoon. Geophys. Res. Lett., 27, 36793682, https://doi.org/10.1029/1999GL011255.

  • Rife, D. L., J. O. Pinto, A. J. Monaghan, C. A. Davis, and J. R. Hannan, 2010: Global distribution and characteristics of diurnally varying low-level jets. J. Climate, 23, 50415064, https://doi.org/10.1175/2010JCLI3514.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, S., and L. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60–92.

  • Tippett, M., J. T. Allen, V. A. Gensini, and H. E. Brooks, 2015: Climate and hazardous convective weather. Curr. Climate Change Rep., 1, 6073, https://doi.org/10.1007/s40641-015-0006-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuovinen, J. P., J. Rauhala, and D. M. Schultz, 2015: Significant-hail-producing storms in Finland: Convective-storm environment and mode. Wea. Forecasting, 30, 10641076, https://doi.org/10.1175/WAF-D-14-00159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Ding, 2006: Changes in global monsoon precipitation over the past 56 years. Geophys. Res. Lett., 33, 272288, https://doi.org/10.1029/2005GL025347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Y. Zhang, and M. M. Lu, 2004: Definition of South China Sea monsoon onset and commencement of the East Asia summer monsoon. J. Climate, 17, 699710, https://doi.org/10.1175/2932.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1987: The elementary monsoon. Monsoons, J. S. Fein and P. L. Stephens, Eds., Wiley-Interscience, 3–32.

  • Webster, P. J., V. O. Magaña, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability and the prospects for prediction. J. Geophys. Res., 103, 14 45114 510, https://doi.org/10.1029/97JC02719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. Academic Press, 676 pp.

  • Xie, B., Q. Zhang, and Y. Wang, 2008: Trends in hail in China during 1960–2005. Geophys. Res. Lett., 35, L13801, https://doi.org/10.1029/2008GL034067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, B., Q. Zhang, and Y. Wang, 2010: Observed characteristics of hail size in four regions in China during 1980–2005. J. Climate, 23, 49734982, https://doi.org/10.1175/2010JCLI3600.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Q. Zhang, and Y. Wang, 2008: Climatology of hail in China: 1961–2005. J. Appl. Meteor. Climatol., 47, 795804, https://doi.org/10.1175/2007JAMC1603.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., Z. Chen, Y. Wang, and W. Ma, 2007: Comparison of radiosonde observation and L-band radar data and 59-701 system (in Chinese). Mater. Sci. Technol., 35, 123125.

    • Search Google Scholar
    • Export Citation
  • Zheng, L., J. Sun, X. Zhang, and C. Liu, 2013: Organizational modes of mesoscale convective systems. Wea. Forecasting, 28, 10811098, https://doi.org/10.1175/WAF-D-12-00088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. S., P. S. Ray, and N. C. Knight, 1983: Hail growth in an Oklahoma multicell storm. J. Atmos. Sci., 40, 17681791, https://doi.org/10.1175/1520-0469(1983)040<1768:HGIAOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 715 174 12
PDF Downloads 887 381 57