Using Radar Reflectivity to Evaluate the Vertical Structure of Forecast Convection

Mariusz Starzec Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota

Search for other papers by Mariusz Starzec in
Current site
Google Scholar
PubMed
Close
,
Gretchen L. Mullendore Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota

Search for other papers by Gretchen L. Mullendore in
Current site
Google Scholar
PubMed
Close
, and
Paul A. Kucera Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Paul A. Kucera in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Several months of regional convection-permitting forecasts using two microphysical schemes (WSM6 and Thompson) are evaluated to determine the accuracy of the simulated convective structure and convective depth and the impact of microphysical scheme on simulated convective properties and biases. Forecasts are evaluated by using concepts from object-based approaches to compare the three-dimensional simulated reflectivity field with the reflectivity field as observed by radar. Results from analysis of both schemes reveals that forecasts generally perform well near the surface but differ considerably aloft both from observations and from each other. Forecasts are found to contain too many convective cores that are individually larger than in the observations, with at least double the number of observed convective cores reaching the midtroposphere (i.e., 4–8 km). Although the number of cores is overpredicted, WSM6 cores typically contain lower simulated reflectivity values than the observations, and the regions of highest reflectivity values do not extend far enough vertically. Conversely, Thompson cores are found to have significantly higher reflectivity values within cores, with the strongest intensities extending higher than in the observations and having magnitudes higher than any observed cores. Forecast reflectivity distributions within convective cells are found to contain more spread than in the observations. The study also assessed the uncertainty in simulated reflectivity calculations by using a second commonly utilized method to calculate simulated reflectivity. The sensitivity analysis reveals that the primary conclusions with each method are similar but the variability generated by using different simulated reflectivity calculations can be as pronounced as when using different microphysical schemes.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mariusz Starzec, mariusz.starzec@my.und.edu

Abstract

Several months of regional convection-permitting forecasts using two microphysical schemes (WSM6 and Thompson) are evaluated to determine the accuracy of the simulated convective structure and convective depth and the impact of microphysical scheme on simulated convective properties and biases. Forecasts are evaluated by using concepts from object-based approaches to compare the three-dimensional simulated reflectivity field with the reflectivity field as observed by radar. Results from analysis of both schemes reveals that forecasts generally perform well near the surface but differ considerably aloft both from observations and from each other. Forecasts are found to contain too many convective cores that are individually larger than in the observations, with at least double the number of observed convective cores reaching the midtroposphere (i.e., 4–8 km). Although the number of cores is overpredicted, WSM6 cores typically contain lower simulated reflectivity values than the observations, and the regions of highest reflectivity values do not extend far enough vertically. Conversely, Thompson cores are found to have significantly higher reflectivity values within cores, with the strongest intensities extending higher than in the observations and having magnitudes higher than any observed cores. Forecast reflectivity distributions within convective cells are found to contain more spread than in the observations. The study also assessed the uncertainty in simulated reflectivity calculations by using a second commonly utilized method to calculate simulated reflectivity. The sensitivity analysis reveals that the primary conclusions with each method are similar but the variability generated by using different simulated reflectivity calculations can be as pronounced as when using different microphysical schemes.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mariusz Starzec, mariusz.starzec@my.und.edu
Save
  • Adler, R. F., and R. A. Mack, 1984: Thunderstorm cloud height–rainfall rate relations for use with satellite rainfall estimation techniques. J. Climate Appl. Meteor., 23, 280296, https://doi.org/10.1175/1520-0450(1984)023<0280:TCHRRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. G., D. M. Wilmouth, J. B. Smith, and D. S. Sayres, 2012: UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor. Science, 337, 835839, https://doi.org/10.1126/science.1222978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E., and J. S. Kain, 2006: Sensitivity of several performance measures to displacement error, bias, and event frequency. Wea. Forecasting, 21, 636648, https://doi.org/10.1175/WAF933.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barber, K. A., G. L. Mullendore, and M. J. Alexander, 2018: Out-of-cloud convective turbulence: Estimation method and impacts of model resolution. J. Appl. Meteor. Climatol., 57, 121136, https://doi.org/10.1175/JAMC-D-17-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barth, M. C., S.-W. Kim, W. C. Skamarock, A. L. Stuart, K. E. Pickering, and L. E. Ott, 2007: Simulations of the redistribution of formaldehyde, formic acid, and peroxides in the 10 July 1996 Stratospheric–Tropospheric Experiment: Radiation, Aerosols, and Ozone deep convection storm. J. Geophys. Res., 112, D13310, https://doi.org/10.1029/2006JD008046.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., J. C. Nicol, J. H. Marsham, P. Rogberg, and E. G. Norton, 2011: Layers of insect echoes near a thunderstorm and implications for the interpretation of radar data in terms of airflow. Quart. J. Roy. Meteor. Soc., 137, 723735, https://doi.org/10.1002/qj.800.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burghardt, B. J., C. Evans, and P. J. Roebber, 2014: Assessing the predictability of convection initiation in the High Plains using an object-based approach. Wea. Forecasting, 29, 403418, https://doi.org/10.1175/WAF-D-13-00089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, H., and R. E. Dumais, 2015: Object-based evaluation of a numerical weather prediction model’s performance through forecast storm characteristic analysis. Wea. Forecasting, 30, 14511468, https://doi.org/10.1175/WAF-D-15-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caine, S., T. P. Lane, P. T. May, C. Jakob, S. T. Siems, M. J. Manton, and J. Pinto, 2013: Statistical assessment of tropical convection-permitting model simulations using a cell-tracking algorithm. Mon. Wea. Rev., 141, 557581, https://doi.org/10.1175/MWR-D-11-00274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012: An overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment. Bull. Amer. Meteor. Soc., 93, 5574, https://doi.org/10.1175/BAMS-D-11-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., R. G. Bullock, T. L. Jensen, M. Xue, and F. Kong, 2014: Application of object-based time-domain diagnostics for tracking precipitation systems in convection-allowing models. Wea. Forecasting, 29, 517542, https://doi.org/10.1175/WAF-D-13-00098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., B. Brown, and R. Bullock, 2006: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784, https://doi.org/10.1175/MWR3145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., B. Brown, R. Bullock, and J. Halley-Gotway, 2009: The Method for Object-Based Diagnostic Evaluation (MODE) applied to numerical forecasts from the 2005 NSSL/SPC Spring Program. Wea. Forecasting, 24, 12521267, https://doi.org/10.1175/2009WAF2222241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickerson, R. R., and Coauthors, 1987: Thunderstorms: An important mechanism in the transport of air pollutants. Science, 235, 460465, https://doi.org/10.1126/science.235.4787.460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, M., 2010: Radx C++ software package radial radar data. NCAR, https://ral.ucar.edu/projects/titan/docs/radial_formats/radx.

  • Donavon, R. A., and K. A. Jungbluth, 2007: Evaluation of a technique for radar identification of large hail across the upper Midwest and central plains of the United States. Wea. Forecasting, 22, 244254, https://doi.org/10.1175/WAF1008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Dover, 562 pp.

  • Ebert, E. E., and J. L. McBride, 2000: Verification of precipitation in weather systems: Determination of systematic errors. J. Hydrol., 239, 179202, https://doi.org/10.1016/S0022-1694(00)00343-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., and W. A. Gallus Jr., 2009: Toward better understanding of the contiguous rain area (CRA) method for spatial forecast verification. Wea. Forecasting, 24, 14011415, https://doi.org/10.1175/2009WAF2222252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., Jr., 2010: Application of object-based verification techniques to ensemble precipitation forecasts. Wea. Forecasting, 25, 144158, https://doi.org/10.1175/2009WAF2222274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, S. M., J. A. Otkin, C. M. Rozoff, J. M. Sieglaff, L. M. Cronce, and C. R. Alexander, 2017: Methods for comparing simulated and observed satellite infrared brightness temperatures and what do they tell us? Wea. Forecasting, 32, 525, https://doi.org/10.1175/WAF-D-16-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, G., 1978: The probability of hail in relation to radar echo heights. J. Appl. Meteor., 17, 755762, https://doi.org/10.1175/1520-0450(1978)017<0755:TPOHIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Houze, R. A., Jr., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425461, https://doi.org/10.1002/qj.49711548702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, T. L., and Coauthors, 2010: An overview of the objective evaluation performed during the Hazardous Weather Testbed (HWT) 2010 Spring Experiment. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 13B.1, https://ams.confex.com/ams/25SLS/techprogram/paper_175848.htm.

  • Johnson, A., and X. Wang, 2013: Object-based evaluation of a storm-scale ensemble during the 2009 NOAA Hazardous Weather Testbed Spring Experiment. Mon. Wea. Rev., 141, 10791098, https://doi.org/10.1175/MWR-D-12-00140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, F. Kong, and M. Xue, 2013: Object-based evaluation of the impact of horizontal grid spacing on convection-allowing forecasts. Mon. Wea. Rev., 141, 34133425, https://doi.org/10.1175/MWR-D-13-00027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, https://doi.org/10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2010: Assessing advances in the assimilation of radar data and other mesoscale observations within a collaborative forecasting–research environment. Wea. Forecasting, 25, 15101521, https://doi.org/10.1175/2010WAF2222405.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., B. S. Ferrier, M. T. Stoelinga, E. J. Szoke, S. J. Weiss, and J. S. Kain, 2005: The use of simulated radar reflectivity fields in diagnosis of mesoscale phenomena from high-resolution WRF Model forecasts. 11th Conf. on Mesoscale Processes and 32nd Conf. on Radar Meteorology,Albuquerque, NM, Amer. Meteor. Soc., J4J.7, http://ams.confex.com/ams/pdfpapers/97032.pdf.

  • Kumjian, M. R., 2013a: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013b: Principles and applications of dual-polarization weather radar. Part II: Warm- and cold-season applications. J. Oper. Meteor., 1, 243264, https://doi.org/10.15191/nwajom.2013.0120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013c: Principles and applications of dual-polarization weather radar. Part III: Artifacts. J. Oper. Meteor., 1, 265274, https://doi.org/10.15191/nwajom.2013.0121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., J. Zhang, and K. Howard, 2010: A technique to censor biological echoes in radar reflectivity data. J. Appl. Meteor. Climatol., 49, 453462, https://doi.org/10.1175/2009JAMC2255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, T. L. Clark, and H.-M. Hsu, 2003: An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60, 12971321, https://doi.org/10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83, 407430, https://doi.org/10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, K.-H., S. Choo, D. Lee, and G. Lee, 2015: Evaluation of WRF cloud microphysics schemes using radar observations. Wea. Forecasting, 30, 15711589, https://doi.org/10.1175/WAF-D-14-00095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mittermaier, M. P., 2014: A strategy for verifying near-convection-resolving model forecasts at observing sites. Wea. Forecasting, 29, 185204, https://doi.org/10.1175/WAF-D-12-00075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mullendore, G. L., D. R. Durran, and J. R. Holton, 2005: Cross-tropopause tracer transport in midlatitude convection. J. Geophys. Res., 110, D06113, https://doi.org/10.1029/2004JD005059.

    • Search Google Scholar
    • Export Citation
  • Pessi, A. T., and S. Businger, 2009: Relationships among lightning, precipitation, and hydrometeor characteristics over the North Pacific Ocean. J. Appl. Meteor. Climatol., 48, 833848, https://doi.org/10.1175/2008JAMC1817.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., J. A. Grim, and M. Steiner, 2015: Assessment of the High-Resolution Rapid Refresh model’s ability to predict mesoscale convective systems using object-based evaluation. Wea. Forecasting, 30, 892913, https://doi.org/10.1175/WAF-D-14-00118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, S. W., and R. A. Houze Jr., 2015: Evolution of precipitation and convective echo top heights observed by TRMM radar over the Indian Ocean during DYNAMO. J. Geophys. Res. Atmos., 120, 39063919, https://doi.org/10.1002/2014JD022934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., M. L. Black, S. S. Chen, and R. A. Black, 2007: An evaluation of microphysics fields from mesoscale model simulations of tropical cyclones. Part I: Comparisons with observations. J. Atmos. Sci., 64, 18111834, https://doi.org/10.1175/JAS3932.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnic, 2005: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, https://doi.org/10.1175/BAMS-86-6-809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2009: Next-day convection-allowing WRF Model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 33513372, https://doi.org/10.1175/2009MWR2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Steiner, M., and J. A. Smith, 2002: Use of three-dimensional reflectivity structure for automated detection and removal of nonprecipitating echoes in radar data. J. Atmos. Oceanic Technol., 19, 673686, https://doi.org/10.1175/1520-0426(2002)019<0673:UOTDRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, L., J. Zhang, C. Langston, J. Krause, K. Howard, and V. Lakshmanan, 2014: A physically based precipitation–nonprecipitation radar echo classifier using polarimetric and environmental data in a real-time national system. Wea. Forecasting, 29, 11061119, https://doi.org/10.1175/WAF-D-13-00072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ushio, T., S. J. Heckman, D. J. Boccippio, H. J. Christian, and Z.-I. Kawasaki, 2001: A survey of thunderstorm flash rates compared to cloud top height using TRMM satellite data. J. Geophys. Res., 106, 24 08924 095, https://doi.org/10.1029/2001JD900233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., N. P. M. van Lipzig, and L. Delobbe, 2011: Evaluation of moist processes during intense precipitation in km-scale NWP models using remote sensing and in-situ data: Impact of microphysics size distribution assumptions. Atmos. Res., 99, 1538, https://doi.org/10.1016/j.atmosres.2010.08.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW Model. Wea. Forecasting, 23, 407437, https://doi.org/10.1175/2007WAF2007005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y. H., and P. King, 2010: Investigating the potential of using radar echo reflectivity to nowcast cloud-to-ground lightning initiation over southern Ontario. Wea. Forecasting, 25, 12351248, https://doi.org/10.1175/2010WAF2222387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 814 145 14
PDF Downloads 741 141 16