Variations in Snow Crystal Riming and ZDR: A Case Analysis

Patrick Kennedy CSU–CHILL National Weather Radar Facility, Colorado State University, Greeley, Colorado

Search for other papers by Patrick Kennedy in
Current site
Google Scholar
PubMed
Close
,
Merhala Thurai Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by Merhala Thurai in
Current site
Google Scholar
PubMed
Close
,
Christophe Praz Environmental Remote Sensing Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Search for other papers by Christophe Praz in
Current site
Google Scholar
PubMed
Close
,
V. N. Bringi Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by V. N. Bringi in
Current site
Google Scholar
PubMed
Close
,
Alexis Berne Environmental Remote Sensing Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Search for other papers by Alexis Berne in
Current site
Google Scholar
PubMed
Close
, and
Branislav M. Notaroš Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by Branislav M. Notaroš in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A case study in terms of variations in differential reflectivity ZDR observed at X band and snow crystal riming is presented for a light-snow event that occurred near Greeley, Colorado, on 26–27 November 2015. In the early portion of the event, ZDR values at near-surface levels were low (0–0.25 dB). During a second time period approximately 8 h later, ZDR values became distinctly positive (+2–3 dB). Digital photographs of the snow particles were obtained by a Multi-Angle Snowflake Camera (MASC) installed at a range of 13 km from the radar. Image-processing and machine-learning techniques applied to the MASC data showed that the snow particles were more heavily rimed during the low-ZDR time period. The aerodynamic effects of these rime deposits promoted a wider distribution of hydrometeor canting angles. The shift toward more random particle orientations underlies the observed reduction in ZDR during the period when more heavily rimed particles were observed in the MASC data.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Branislav M. Notaroš, notaros@colostate.edu

Abstract

A case study in terms of variations in differential reflectivity ZDR observed at X band and snow crystal riming is presented for a light-snow event that occurred near Greeley, Colorado, on 26–27 November 2015. In the early portion of the event, ZDR values at near-surface levels were low (0–0.25 dB). During a second time period approximately 8 h later, ZDR values became distinctly positive (+2–3 dB). Digital photographs of the snow particles were obtained by a Multi-Angle Snowflake Camera (MASC) installed at a range of 13 km from the radar. Image-processing and machine-learning techniques applied to the MASC data showed that the snow particles were more heavily rimed during the low-ZDR time period. The aerodynamic effects of these rime deposits promoted a wider distribution of hydrometeor canting angles. The shift toward more random particle orientations underlies the observed reduction in ZDR during the period when more heavily rimed particles were observed in the MASC data.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Branislav M. Notaroš, notaros@colostate.edu
Save
  • Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, https://doi.org/10.1175/2009JAS2883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Botta, G., K. Aydin, J. Verlinde, A. E. Avramov, A. S. Ackerman, A. M. Fridlind, G. M. McFarquhar, and M. Wolde, 2011: Millimeter wave scattering from ice crystals and their aggregates: Comparing cloud model simulations with X- and Ka-band radar measurements. J. Geophys. Res., 116, D00T04, https://doi.org/10.1029/2011JD015909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, and R. Xiao, 1998: Raindrop axis ratios and size distributions in Florida rainshafts: An assessment of multiparameter radar algorithms. IEEE Trans. Geosci. Remote Sens., 36, 703715, https://doi.org/10.1109/36.673663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolan, B., and S. A. Rutledge, 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 20712088, https://doi.org/10.1175/2009JTECHA1208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., C. Fallgatter, K. Shkurko, and D. Howlett, 2012: Fall speed measurement and high-resolution multi-angle photography of hydrometeors in free fall. Atmos. Meas. Tech., 5, 26252633, https://doi.org/10.5194/amt-5-2625-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., S. E. Yuter, C. Fallgatter, K. Shkurko, S. R. Rhodes, and J. L. Endries, 2015: Orientations and aspect ratios of falling snow. Geophys. Res. Lett., 42, 46174622, https://doi.org/10.1002/2015GL064040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., T. Toto, A. Bansemer, M. R. Kumjian, S. Mishra, and A. V. Ryzhkov, 2016: Insights into riming and aggregation processes as revealed by aircraft, radar, and disdrometer observations for a 27 April 2011 widespread precipitation event. J. Geophys. Res. Atmos., 121, 58465863, https://doi.org/10.1002/2015JD024537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., 1987: Relations among linear and circular polarization parameters measured in canted hydrometeors. J. Atmos. Oceanic Technol., 4, 634645, https://doi.org/10.1175/1520-0426(1987)004<0634:RALACP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayaweera, K. O. L. F., and B. J. Mason, 1966: The falling motions of loaded cylinders and discs simulating snow crystals. Quart. J. Roy. Meteor. Soc., 92, 151156, https://doi.org/10.1002/qj.49709239115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junyent, F., V. Chandrasekar, V. N. Bringi, S. A. Rutledge, P. C. Kennedy, D. Brunkow, J. George, and R. Bowie, 2015: Transformation of the CSU–CHILL radar facility to a dual-frequency, dual-polarization Doppler system. Bull. Amer. Meteor. Soc., 96, 975996, https://doi.org/10.1175/BAMS-D-13-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., and S. A. Rutledge, 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858, https://doi.org/10.1175/2010JAMC2558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, H. D. Reeves, and T. J. Schuur, 2013: A dual-polarization radar signature of hydrometeor refreezing in winter storms. J. Appl. Meteor. Climatol., 52, 25492566, https://doi.org/10.1175/JAMC-D-12-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, K.-S., and Coauthors, 2016: The microwave radiative properties of falling snow derived from nonspherical ice particle models. Part I: An extensive database of simulated pristine crystals and aggregate particles, and their scattering properties. J. Appl. Meteor. Climatol., 55, 691708, https://doi.org/10.1175/JAMC-D-15-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-S., 1980: Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell., 2, 165168, https://doi.org/10.1109/TPAMI.1980.4766994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Y., Z. Jiang, K. Aydin, J. Verlinde, E. E. Clothiaux, and G. Botta, 2016: A polarimetric scattering database for non-spherical ice particles at microwave wavelengths. Atmos. Meas. Tech., 9, 51195134, https://doi.org/10.5194/amt-9-5119-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, R. A. Kropfli, B. E. Martner, and B. W. Bartram, 2001: On the use of radar depolarization ratios for estimating shapes of ice hydrometeors in winter clouds. J. Appl. Meteor., 40, 479490, https://doi.org/10.1175/1520-0450(2001)040<0479:OTUORD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, and I. V. Djalalova, 2005: Inferring fall attitudes of pristine dendritic crystals from polarimetric radar data. J. Atmos. Sci., 62, 241250, https://doi.org/10.1175/JAS-3356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V., and J. M. Straka, 2013: Axis ratios and flutter angles of cloud ice particles: Retrievals from radar data. J. Atmos. Oceanic Technol., 30, 16911703, https://doi.org/10.1175/JTECH-D-12-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moisseev, D., A. von Lerber, and J. Tiira, 2017: Quantifying the effect of riming on snowfall using ground-based observations. J. Geophys. Res. Atmos., 122, 40194037, https://doi.org/10.1002/2016JD026272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mosimann, L., E. Weingartner, and A. Waldvogel, 1994: An analysis of accreted drop sizes and mass on rimed snow crystals. J. Atmos. Sci., 51, 15481558, https://doi.org/10.1175/1520-0469(1994)051<1548:AAOADS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaroš, B. M., and Coauthors, 2016: Accurate characterization of winter precipitation using multi-angle snowflake camera, visual hull, advanced scattering methods and polarimetric radar. Atmosphere, 7, 81, https://doi.org/10.3390/atmos7060081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Praz, C., Y.-A. Roulet, and A. Berne, 2017: Solid hydrometeor classification and riming degree estimation from pictures collected with a multi-angle snowflake camera. Atmos. Meas. Tech., 10, 13351357, https://doi.org/10.5194/amt-10-1335-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and Coauthors, 1992: Winter Icing and Storms Project (WISP). Bull. Amer. Meteor. Soc., 73, 951974, https://doi.org/10.1175/1520-0477(1992)073<0951:WIASP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., B. C. Bernstein, M. Murakami, G. Stossmeister, J. Reisner, and B. Stankov, 1995: The 1990 Valentine’s Day Arctic outbreak. Part I: Mesoscale and microscale structure and evolution of a Colorado Front Range shallow upslope cloud. J. Appl. Meteor., 34, 14811511, https://doi.org/10.1175/1520-0450-34.7.1481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and Coauthors, 2012: How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, https://doi.org/10.1175/BAMS-D-11-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894, https://doi.org/10.1175/2010JAMC2363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., P. Zhang, H. Reeves, M. Kumjian, T. Tschallener, S. Trömel, and C. Simmer, 2016: Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Oceanic Technol., 33, 551562, https://doi.org/10.1175/JTECH-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 6976, https://doi.org/10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheppard, B. E., 1990: Measurement of raindrop size distributions using a small Doppler radar. J. Atmos. Oceanic Technol., 7, 255268, https://doi.org/10.1175/1520-0426(1990)007<0255:MORSDU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. L., 1984: Equivalent radar reflectivity factors for snow and ice particles. J. Climate Appl. Meteor., 23, 12581260, https://doi.org/10.1175/1520-0450(1984)023<1258:ERRFFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., V. N. Bringi, L. D. Carey, P. Gatlin, E. Schultz, and W. A. Petersen, 2012: Estimating the accuracy of polarimetric radar-based retrievals of drop-size distribution parameters and rain rate: An application of error variance separation using radar-derived spatial correlations. J. Hydrometeor., 13, 10661079, https://doi.org/10.1175/JHM-D-11-070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogel, J. M., F. Fabry, and I. Zawadzki, 2015: Attempts to observe polarimetric signatures of riming in stratiform precipitation. 37th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor Soc., 6B.6, https://ams.confex.com/ams/37RADAR/webprogram/Manuscript/Paper275246/Vogel_37abstract.pdf.

  • Williams, E. R., and Coauthors, 2015: Measurements of differential reflectivity in snowstorms and warm season stratiform systems. J. Appl. Meteor. Climatol., 54, 573595, https://doi.org/10.1175/JAMC-D-14-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolde, M., and G. Vali, 2001: Polarimetric signatures from ice crystals observed at 95 GHz in winter clouds. Part I: Dependence on crystal form. J. Atmos. Sci., 58, 828841, https://doi.org/10.1175/1520-0469(2001)058<0828:PSFICO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zikmunda, J., and G. Vali, 1972: Fall patterns and fall velocities of rimed ice crystals. J. Atmos. Sci., 29, 13341347, https://doi.org/10.1175/1520-0469(1972)029<1334:FPAFVO>2.0.CO;2; Corrigendum, 34, 1482–1484, https://doi.org/10.1175/1520-0469(1977)034<1482:>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 497 137 7
PDF Downloads 367 73 4