Mesoscale Simulations of Australian Direct Normal Irradiance, Featuring an Extreme Dust Event

S. K. Mukkavilli School of Photovoltaic and Renewable Energy Engineering, University of South Wales, Sydney, New South Wales, and CSIRO Oceans and Atmosphere Flagship, Canberra, Australia

Search for other papers by S. K. Mukkavilli in
Current site
Google Scholar
PubMed
Close
,
A. A. Prasad Centre of Excellence for Climate System Science, Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by A. A. Prasad in
Current site
Google Scholar
PubMed
Close
,
R. A. Taylor School of Photovoltaic and Renewable Energy Engineering, and School of Mechanical and Manufacturing Engineering, University of South Wales, Sydney, New South Wales, Australia

Search for other papers by R. A. Taylor in
Current site
Google Scholar
PubMed
Close
,
A. Troccoli CSIRO Oceans and Atmosphere Flagship, Canberra, Australia, and School of Environmental Sciences, University of East Anglia, and World Energy and Meteorology Council, Norwich, United Kingdom

Search for other papers by A. Troccoli in
Current site
Google Scholar
PubMed
Close
, and
M. J. Kay School of Photovoltaic and Renewable Energy Engineering, University of South Wales, Sydney, New South Wales, Australia

Search for other papers by M. J. Kay in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Direct normal irradiance (DNI) is the main input for concentrating solar power (CSP) technologies—an important component in future energy scenarios. DNI forecast accuracy is sensitive to radiative transfer schemes (RTSs) and microphysics in numerical weather prediction (NWP) models. Additionally, NWP models have large regional aerosol uncertainties. Dust aerosols can significantly attenuate DNI in extreme cases, with marked consequences for applications such as CSP. To date, studies have not compared the skill of different physical parameterization schemes for predicting hourly DNI under varying aerosol conditions over Australia. The authors address this gap by aiming to provide the first Weather and Forecasting (WRF) Model DNI benchmarks for Australia as baselines for assessing future aerosol-assimilated models. Annual and day-ahead simulations against ground measurements at selected sites focusing on an extreme dust event are run. Model biases are assessed for five shortwave RTSs at 30- and 10-km grid resolutions, along with the Thompson aerosol-aware scheme in three different microphysics configurations: no aerosols, fixed optical properties, and monthly climatologies. From the annual simulation, the best schemes were the Rapid Radiative Transfer Model for global climate models (RRTMG), followed by the new Goddard and Dudhia schemes, despite the relative simplicity of the latter. These top three RTSs all had 1.4–70.8 W m−2 lower mean absolute error than persistence. RRTMG with monthly aerosol climatologies was the best combination. The extreme dust event had large DNI mean bias overpredictions (up to 4.6 times), compared to background aerosol results. Dust storm–aware DNI forecasts could benefit from RRTMG with high-resolution aerosol inputs.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Surya Karthik Mukkavilli, karthik.mukkavilli@student.unsw.edu.au

Abstract

Direct normal irradiance (DNI) is the main input for concentrating solar power (CSP) technologies—an important component in future energy scenarios. DNI forecast accuracy is sensitive to radiative transfer schemes (RTSs) and microphysics in numerical weather prediction (NWP) models. Additionally, NWP models have large regional aerosol uncertainties. Dust aerosols can significantly attenuate DNI in extreme cases, with marked consequences for applications such as CSP. To date, studies have not compared the skill of different physical parameterization schemes for predicting hourly DNI under varying aerosol conditions over Australia. The authors address this gap by aiming to provide the first Weather and Forecasting (WRF) Model DNI benchmarks for Australia as baselines for assessing future aerosol-assimilated models. Annual and day-ahead simulations against ground measurements at selected sites focusing on an extreme dust event are run. Model biases are assessed for five shortwave RTSs at 30- and 10-km grid resolutions, along with the Thompson aerosol-aware scheme in three different microphysics configurations: no aerosols, fixed optical properties, and monthly climatologies. From the annual simulation, the best schemes were the Rapid Radiative Transfer Model for global climate models (RRTMG), followed by the new Goddard and Dudhia schemes, despite the relative simplicity of the latter. These top three RTSs all had 1.4–70.8 W m−2 lower mean absolute error than persistence. RRTMG with monthly aerosol climatologies was the best combination. The extreme dust event had large DNI mean bias overpredictions (up to 4.6 times), compared to background aerosol results. Dust storm–aware DNI forecasts could benefit from RRTMG with high-resolution aerosol inputs.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Surya Karthik Mukkavilli, karthik.mukkavilli@student.unsw.edu.au
Save
  • AEMO, 2017: South Australian fuel and technology report. Australian Energy Market Operator Rep., 83 pp., https://www.aemo.com.au/-/media/Files/Electricity/NEM/Planning_and_Forecasting/SA_Advisory/2017/2017_SAFTR.pdf.

  • Alam, M. M., 2014: Impact of cloud microphysics and cumulus parameterization on simulation of heavy rainfall event during 7–9 October 2007 over Bangladesh. J. Earth Syst. Sci., 123, 259279, https://doi.org/10.1007/s12040-013-0401-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alizadeh Choobari, O., P. Zawar-Reza, and A. Sturman, 2012: Atmospheric forcing of the three-dimensional distribution of dust particles over Australia: A case study. J. Geophys. Res., 117, D11206, https://doi.org/10.1029/2012JD017748.

    • Search Google Scholar
    • Export Citation
  • Alizadeh Choobari, O., P. Zawar-Reza, and A. Sturman, 2013: Simulation of the spatial distribution of mineral dust and its direct radiative forcing over Australia. Tellus, 65B, 19856, https://doi.org/10.3402/tellusb.v65i0.19856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badarinath, K., S. K. Kharol, D. Kaskaoutis, and H. Kambezidis, 2007: Case study of a dust storm over Hyderabad area, India: Its impact on solar radiation using satellite data and ground measurements. Sci. Total Environ., 384, 316332, https://doi.org/10.1016/j.scitotenv.2007.05.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baddock, M. C., J. E. Bullard, and R. G. Bryant, 2009: Dust source identification using MODIS: A comparison of techniques applied to the Lake Eyre basin, Australia. Remote Sens. Environ., 113, 15111528, https://doi.org/10.1016/j.rse.2009.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bahadori, A., and C. Nwaoha, 2013: A review on solar energy utilisation in Australia. Renewable Sustainable Energy Rev., 18, 15, https://doi.org/10.1016/j.rser.2012.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, H. W., R. Pincus, and J.-J. Morcrette, 2002: The Monte Carlo Independent Column Approximation: Application within large-scale models. Proc. GCSS/ARM Workshop on the Representation of Cloud Systems in Large-Scale Models, Kananaskis, Canada, GEWEX, 1–10.

  • Barker, H. W., J. N. S. Cole, J.-J. Morcrette, R. Pincus, P. Räisänen, K. von Salzen, and P. A. Vaillancourt, 2008: The Monte Carlo Independent Column Approximation: An assessment using several global atmospheric models. Quart. J. Roy. Meteor. Soc., 134, 14631478, https://doi.org/10.1002/qj.303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beath, A. C., 2012: Industrial energy usage in Australia and the potential for implementation of solar thermal heat and power. Energy, 43, 261272, https://doi.org/10.1016/j.energy.2012.04.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1953: The formation of atmospheric ice crystals by the freezing of droplets. Quart. J. Roy. Meteor. Soc., 79, 510519, https://doi.org/10.1002/qj.49707934207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BoM, 2009a: Annual climate summary 2009. Bureau of Meteorology Rep., 26 pp., http://www.bom.gov.au/climate/annual_sum/2009/AnClimSum09_HR1.1.pdf.

  • BOM, 2009b: MSLP analysis (manual) Australian region. Bureau of Meteorology, accessed 18 August 2016, http://www.bom.gov.au/cgi-bin/charts/charts.view.pl?idcode=IDX0102&file=IDX0102.200909221800.gif.

  • BoM, 2012: Australian one minute solar radiation data, 2009 metadata: Product notes. Bureau of Meteorology, accessed 1 January 2016, http://www.bom.gov.au/climate/data/oneminsolar/about-IDCJAC0022.shtml.

  • Box, M. A., M. Radhi, and G. P. Box, 2010: The great Sydney dust event: Size-resolved chemical composition and comparison. IOP Conf. Ser.: Earth Environ. Sci., 11, 012015, https://doi.org/10.1088/1755-1315/11/1/012015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BREE, 2012: Australian energy projections to 2049–50. Bureau of Energy Resources and Economics Rep., 66 pp., https://industry.gov.au/Office-of-the-Chief-Economist/Publications/Documents/aep/australian-energy-projections-to-2050.pdf.

  • BREE, 2014: Australian energy projections to 2049–50. Bureau of Energy Resources and Economics Rep., 49 pp., https://industry.gov.au/Office-of-the-Chief-Economist/Publications/Documents/aep/aep-2014-v2.pdf.

  • Bukovsky, M. S., and D. J. Karoly, 2009: Precipitation simulations using WRF as a nested regional climate model. J. Appl. Meteor. Climatol., 48, 21522159, https://doi.org/10.1175/2009JAMC2186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chin, M., and Coauthors, 2002: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. J. Atmos. Sci., 59, 461483, https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chotamonsak, C., E. P. Salathé Jr., J. Kreasuwan, and S. Chantara, 2012: Evaluation of precipitation simulations over Thailand using a WRF regional climate model. Chiang Mai J. Sci., 39, 623638, https://atmos.washington.edu/~salathe/papers/full/Chotamonsak_2012.pdf.

    • Search Google Scholar
    • Export Citation
  • Chou, M., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. Tech Memo. NASA/TM-104606-VOL-3, Vol. 3, 93 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950009331.pdf.

  • Chou, M., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. Tech Memo. NASA/TM-1999-104606, Vol. 15, 38 pp., http://gmao.gsfc.nasa.gov/pubs/docs/Chou136.pdf.

  • Clarke, H., J. P. Evans, and A. J. Pitman, 2013: Fire weather simulation skill by the Weather Research and Forecasting (WRF) Model over south-east Australia from 1985 to 2009. Int. J. Wildland Fire, 22, 739756, https://doi.org/10.1071/WF12048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, https://doi.org/10.1016/j.jqsrt.2004.05.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colarco, P., A. da Silva, M. Chin, and T. Diehl, 2010: Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res., 115, D14207, https://doi.org/10.1029/2009JD012820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CORDEX, 2015: Australasia domain. Coordinated Regional Climate Downscaling Experiment, World Climate Research Program, http://cordex.org/domains/region-9-australasia/.

  • Crétat, J., B. Pohl, Y. Richard, and P. Drobinski, 2012: Uncertainties in simulating regional climate of southern Africa: Sensitivity to physical parameterizations using WRF. Climate Dyn., 38, 613634, https://doi.org/10.1007/s00382-011-1055-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cruz, M. G., A. L. Sullivan, J. S. Gould, N. C. Sims, A. J. Bannister, J. J. Hollis, and R. J. Hurley, 2012: Anatomy of a catastrophic wildfire: The Black Saturday Kilmore East fire in Victoria, Australia. For. Ecol. Manage., 284, 269285, https://doi.org/10.1016/j.foreco.2012.02.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, https://doi.org/10.1073/pnas.0910818107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ekström, M., G. H. McTainsh, and A. Chappell, 2004: Australian dust storms: Temporal trends and relationships with synoptic pressure distributions (1960–99). Int. J. Climatol., 24, 15811599, https://doi.org/10.1002/joc.1072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P., and M. F. McCabe, 2010: Regional climate simulation over Australia’s Murray-Darling basin: A multitemporal assessment. J. Geophys. Res., 115, D14114, https://doi.org/10.1029/2010JD013816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P., M. Ekström, and F. Ji, 2012: Evaluating the performance of a WRF physics ensemble over south-east Australia. Climate Dyn., 39, 12411258, https://doi.org/10.1007/s00382-011-1244-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fels, S. B., and M. D. Schwarzkopf, 1981: An efficient, accurate algorithm for calculating CO2 15 μm band cooling rates. J. Geophys. Res., 86, 12051232, https://doi.org/10.1029/JC086iC02p01205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finsterle, W., 2011: WMO International Pyrheliometer Comparison IPC-XI. WMO IOM Rep. 108, 88 pp., http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-108_IPC-XI_Davos.pdf.

  • Flaounas, E., S. Bastin, and S. Janicot, 2011: Regional climate modelling of the 2006 West African monsoon: Sensitivity to convection and planetary boundary layer parameterisation using WRF. Climate Dyn., 36, 10831105, https://doi.org/10.1007/s00382-010-0785-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forgan, B. W., 1996: A new method for calibrating reference and field pyranometers. J. Atmos. Oceanic Technol., 13, 638645, https://doi.org/10.1175/1520-0426(1996)013<0638:ANMFCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 21392156, https://doi.org/10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., P. Yang, and W. B. Sun, 1998: An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Climate, 11, 22232237, https://doi.org/10.1175/1520-0442(1998)011<2223:AAPOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giglio, L., I. Csiszar, and C. O. Justice, 2006: Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J. Geophys. Res., 111, G02016, https://doi.org/10.1029/2005JG000142.

    • Search Google Scholar
    • Export Citation
  • Ginoux, P., M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S. Lin, 2001: Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res., 106, 20 25520 273, https://doi.org/10.1029/2000JD000053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, P. A., and L. J. Rikus, 2016: Validation of the Bureau of Meteorology’s global, diffuse, and direct solar exposure forecasts using the ACCESS numerical weather prediction systems. J. Appl. Meteor. Climatol., 55, 595619, https://doi.org/10.1175/JAMC-D-15-0031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, Y., K. N. Liou, W. Chen, and H. Liao, 2010: Direct climate effect of black carbon in China and its impact on dust storms. J. Geophys. Res., 115, D00K14, https://doi.org/10.1029/2009JD013427.

    • Search Google Scholar
    • Export Citation
  • Gu, Y., K. N. Liou, S. C. Ou, and R. Fovell, 2011: Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution. J. Geophys. Res., 116, D06119, https://doi.org/10.1029/2010JD014574.

    • Search Google Scholar
    • Export Citation
  • Gueymard, C. A., 2012: Temporal variability in direct and global irradiance at various time scales as affected by aerosols. Sol. Energy, 86, 35443553, https://doi.org/10.1016/j.solener.2012.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gueymard, C. A., and J. A. Ruiz-Arias, 2015: Validation of direct normal irradiance predictions under arid conditions: A review of radiative models and their turbidity-dependent performance. Renewable Sustainable Energy Rev., 45, 379396, https://doi.org/10.1016/j.rser.2015.01.065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gueymard, C. A., and J. A. Ruiz-Arias, 2016: Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance. Sol. Energy, 128, 130, https://doi.org/10.1016/j.solener.2015.10.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunawardena, J., A. M. Ziyath, T. E. Bostrom, L. K. Bekessy, G. A. Ayoko, P. Egodawatta, and A. Goonetilleke, 2013: Characterisation of atmospheric deposited particles during a dust storm in urban areas of eastern Australia. Sci. Total Environ., 461–462, 7280, https://doi.org/10.1016/j.scitotenv.2013.04.080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halthore, R. N., and Coauthors, 2005: Intercomparison of shortwave radiative transfer codes and measurements. J. Geophys. Res., 110, D11206, https://doi.org/10.1029/2004JD005293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, C. K., S. S. Khalsa, and G. J. Kolb, 2011: Methods for probabilistic modeling of concentrating solar power plants. Sol. Energy, 85, 669675, https://doi.org/10.1016/j.solener.2010.05.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IEA, 2015: Technology Roadmap Solar Thermal Electricity. OECD Publishing, 52 pp., https://doi.org/10.1787/9789264238824-en.

    • Crossref
    • Export Citation
  • Inman, R. H., H. T. Pedro, and C. F. Coimbra, 2013: Solar forecasting methods for renewable energy integration. Prog. Energy Combust. Sci., 39, 535576, https://doi.org/10.1016/j.pecs.2013.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inness, A., and Coauthors, 2013: The MACC reanalysis: An 8 yr data set of atmospheric composition. Atmos. Chem. Phys., 13, 40734109, https://doi.org/10.5194/acp-13-4073-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jankov, I., W. A. Gallus, M. Segal, B. Shaw, and S. E. Koch, 2005: The impact of different WRF Model physical parameterizations and their interactions on warm season MCS rainfall. Wea. Forecasting, 20, 10481060, https://doi.org/10.1175/WAF888.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jimenez, P. A., and Coauthors, 2016: WRF-Solar: Description and clear-sky assessment of an augmented NWP model for solar power prediction. Bull. Amer. Meteor. Soc., 97, 12491264, https://doi.org/10.1175/BAMS-D-14-00279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiefert, L., G. McTainsh, and W. Nickling, 1996: Sedimentological characteristics of Saharan and Australian dusts. The Impact of Desert Dust across the Mediterranean, S. Guerzoni and R. Chester, Eds., Environmental Science and Technology Library Series, Vol. 11, Springer, 183–190, https://doi.org/10.1007/978-94-017-3354-0_17.

    • Crossref
    • Export Citation
  • Kleissl, J., 2013: Solar Energy Forecasting and Resource Assessment. Academic Press, 416 pp.

  • Kraas, B., M. Schroedter-Homscheidt, and R. Madlener, 2013: Economic merits of a state-of-the-art concentrating solar power forecasting system for participation in the Spanish electricity market. Sol. Energy, 93, 244255, https://doi.org/10.1016/j.solener.2013.04.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lara-Fanego, V., J. A. Ruiz-Arias, D. Pozo-Vázquez, F. J. Santos-Alamillos, and J. Tovar-Pescador, 2012: Evaluation of the WRF Model solar irradiance forecasts in Andalusia (southern Spain). Sol. Energy, 86, 22002217, https://doi.org/10.1016/j.solener.2011.02.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Law, E. W., A. A. Prasad, M. Kay, and R. A. Taylor, 2014: Direct normal irradiance forecasting and its application to concentrated solar thermal output forecasting—A review. Sol. Energy, 108, 287307, https://doi.org/10.1016/j.solener.2014.07.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Law, E. W., M. Kay, and R. A. Taylor, 2016: Evaluating the benefits of using short-term direct normal irradiance forecasts to operate a concentrated solar thermal plant. Sol. Energy, 140, 93108, https://doi.org/10.1016/j.solener.2016.10.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leslie, L. M., and M. S. Speer, 2006: Modelling dust transport over central eastern Australia. Meteor. Appl., 13, 141167, https://doi.org/10.1017/S1350482706002155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leys, J. F., S. K. Heidenreich, C. L. Strong, G. H. McTainsh, and S. Quigley, 2011: PM10 concentrations and mass transport during “Red Dawn”—Sydney 23 September 2009. Aeolian Res., 3, 327342, https://doi.org/10.1016/j.aeolia.2011.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lovegrove, K., and W. Stein, 2012: Concentrating Solar Power Technology: Principles, Developments and Applications. Elsevier, 704 pp.

    • Crossref
    • Export Citation
  • McGowan, H. A., B. Kamber, G. H. McTainsh, and S. K. Marx, 2005: High resolution provenancing of long travelled dust deposited on the Southern Alps, New Zealand. Geomorphology, 69, 208221, https://doi.org/10.1016/j.geomorph.2005.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McTainsh, G. H., and J. R. Pitblado, 1987: Dust storms and related phenomena measured from meteorological records in Australia. Earth Surf. Processes Landforms, 12, 415424, https://doi.org/10.1002/esp.3290120407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McTainsh, G. H., and A. W. Lynch, 1996: Quantitative estimates of the effect of climate change on dust storm activity in Australia during the Last Glacial Maximum. Geomorphology, 17, 263271, https://doi.org/10.1016/0169-555X(95)00106-F.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mills, A., and Coauthors, 2009: Understanding variability and uncertainty of photovoltaics for integration with the electric power system. Lawrence Berkeley National Laboratory Rep. LBNL-2855E, 14 pp., https://escholarship.org/uc/item/58z9s527.

  • Mitchell, R. M., B. W. Forgan, and S. K. Campbell, 2017: The climatology of Australian aerosol. Atmos. Chem. Phys., 17, 51315154, https://doi.org/10.5194/acp-17-5131-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2013: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys., 13, 18531877, https://doi.org/10.5194/acp-13-1853-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and H. W. Barker, 1999: Accounting for subgrid-scale cloud variability in a multi-layer 1D solar radiative transfer algorithm. Quart. J. Roy. Meteor. Soc., 125, 301330, https://doi.org/10.1002/qj.49712555316

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and Coauthors, 2012: The continual intercomparison of radiation codes: Results from Phase I. J. Geophys. Res., 117, D06118, https://doi.org/10.1029/2011JD016821.

    • Search Google Scholar
    • Export Citation
  • Perez, R., S. Kivalov, J. Schlemmer, K. Hemker, D. Renné, and T. E. Hoff, 2010: Validation of short and medium term operational solar radiation forecasts in the US. Sol. Energy, 84, 21612172, https://doi.org/10.1016/j.solener.2010.08.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., P. J. DeMott, and C. Andronache, 2008: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci., 65, 27572783, https://doi.org/10.1175/2007JAS2546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, R., H. W. Barker, and J.-J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res., 108, 4376, https://doi.org/10.1029/2002JD003322.

    • Search Google Scholar
    • Export Citation
  • Prasad, A. A., R. A. Taylor, and M. Kay, 2015: Assessment of direct normal irradiance and cloud connections using satellite data over Australia. Appl. Energy, 143, 301311, https://doi.org/10.1016/j.apenergy.2015.01.050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, Y., and R. M. Mitchell, 2009: Characterisation of episodic aerosol types over the Australian continent. Atmos. Chem. Phys., 9, 19431956, https://doi.org/10.5194/acp-9-1943-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radhi, M., M. A. Box, G. P. Box, R. M. Mitchell, D. D. Cohen, E. Stelcer, and M. D. Keywood, 2010a: Size-resolved mass and chemical properties of dust aerosols from Australia’s Lake Eyre basin. Atmos. Environ., 44, 35193528, https://doi.org/10.1016/j.atmosenv.2010.06.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radhi, M., M. A. Box, G. P. Box, R. M. Mitchell, D. D. Cohen, E. Stelcer, and M. D. Keywood, 2010b: Optical, physical and chemical characteristics of Australian continental aerosols: Results from a field experiment. Atmos. Chem. Phys., 10, 59255942, https://doi.org/10.5194/acp-10-5925-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randles, C., and Coauthors, 2013: Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: Results from the AeroCom Radiative Transfer Experiment. Atmos. Chem. Phys., 13, 23472379, https://doi.org/10.5194/acp-13-2347-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and Coauthors, 2008: Global aerosol climatology from the MODIS satellite sensors. J. Geophys. Res., 113, D14S07, https://doi.org/10.1029/2007JD009661.

    • Search Google Scholar
    • Export Citation
  • REN21, 2014: Renewables 2014 global status report. REN21 Rep., 216 pp., http://www.ren21.net/Portals/0/documents/Resources/GSR/2014/GSR2014_full%20report_low%20res.pdf.

  • Rogers, E., T. Black, B. Ferrier, Y. Lin, D. Parrish, and G. DiMego, 2001: Changes to the NCEP Meso Eta Analysis and Forecast System: Increase in resolution, new cloud microphysics, modified precipitation assimilation, modified 3DVAR analysis. NWS Tech. Procedures Bull. 488, http://www.emc.ncep.noaa.gov/mmb/mmbpll/mesoimpl/eta12tpb/.

  • Ruiz-Arias, J. A., H. Alsamamra, J. Tovar-Pescador, and D. Pozo-Vázquez, 2010: Proposal of a regressive model for the hourly diffuse solar radiation under all sky conditions. Energy Convers. Manage., 51, 881893, https://doi.org/10.1016/j.enconman.2009.11.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz-Arias, J. A., J. Dudhia, C. Gueymard, and D. Pozo-Vázquez, 2013a: Assessment of the Level-3 MODIS daily aerosol optical depth in the context of surface solar radiation and numerical weather modeling. Atmos. Chem. Phys., 13, 675692, https://doi.org/10.5194/acp-13-675-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz-Arias, J. A., J. Dudhia, F. J. Santos-Alamillos, and D. Pozo-Vázquez, 2013b: Surface clear-sky shortwave radiative closure intercomparisons in the Weather Research and Forecasting Model. J. Geophys. Res. Atmos., 118, 99019913, https://doi.org/10.1002/jgrd.50778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz-Arias, J. A., J. Dudhia, and C. A. Gueymard, 2014: A simple parameterization of the short-wave aerosol optical properties for surface direct and diffuse irradiances assessment in a numerical weather model. Geosci. Model Dev., 7, 11591174, https://doi.org/10.5194/gmd-7-1159-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz-Arias, J. A., C. A. Gueymard, F. Santos-Alamillos, and D. Pozo-Vázquez, 2016: Worldwide impact of aerosol’s time scale on the predicted long-term concentrating solar power potential. Sci. Rep., 6, 30546, https://doi.org/10.1038/srep30546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sagan, C., and J. B. Pollack, 1967: Anisotropic nonconservative scattering and the clouds of Venus. J. Geophys. Res., 72, 469477, https://doi.org/10.1029/JZ072i002p00469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoenberg Ferrier, B., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, https://doi.org/10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroedter-Homscheidt, M., A. Oumbe, A. Benedetti, and J.-J. Morcrette, 2013: Aerosols for concentrating solar electricity production forecasts: Requirement quantification and ECMWF/MACC aerosol forecast assessment. Bull. Amer. Meteor. Soc., 94, 903914, https://doi.org/10.1175/BAMS-D-11-00259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroedter-Homscheidt, M., A. Benedetti, and N. Killius, 2017: Verification of ECMWF and ECMWF/MACC’s global and direct irradiance forecasts with respect to solar electricity production forecasts. Meteor. Z., 26, 119, https://doi.org/10.1127/metz/2016/0676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulz, M., and Coauthors, 2006: Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmos. Chem. Phys., 6, 52255246, https://doi.org/10.5194/acp-6-5225-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, Y., J. F. Leys, G. H. McTainsh, and K. Tews, 2007: Numerical simulation of the October 2002 dust event in Australia. J. Geophys. Res., 112, D08207, https://doi.org/10.1029/2006JD007767.

    • Search Google Scholar
    • Export Citation
  • Shi, J. J., and Coauthors, 2010: WRF simulations of the 20–22 January 2007 snow events over eastern Canada: Comparison with in situ and satellite observations. J. Appl. Meteor. Climatol., 49, 22462266, https://doi.org/10.1175/2010JAMC2282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siddaway, J. M., and S. V. Petelina, 2011: Transport and evolution of the 2009 Australian Black Saturday bushfire smoke in the lower stratosphere observed by OSIRIS on Odin. J. Geophys. Res., 116, D06203, https://doi.org/10.1029/2010JD015162.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Stamnes, K., S. Tsay, W. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 25022509, https://doi.org/10.1364/AO.27.002502.

    • Crossref