High-Resolution Historical Climate Simulations over Alaska

Andrew J. Monaghan National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew J. Monaghan in
Current site
Google Scholar
PubMed
Close
,
Martyn P. Clark National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Martyn P. Clark in
Current site
Google Scholar
PubMed
Close
,
Michael P. Barlage National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Michael P. Barlage in
Current site
Google Scholar
PubMed
Close
,
Andrew J. Newman National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew J. Newman in
Current site
Google Scholar
PubMed
Close
,
Lulin Xue National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Lulin Xue in
Current site
Google Scholar
PubMed
Close
,
Jeffrey R. Arnold U.S. Army Corps of Engineers, Seattle, Washington

Search for other papers by Jeffrey R. Arnold in
Current site
Google Scholar
PubMed
Close
, and
Roy M. Rasmussen National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Roy M. Rasmussen in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Weather and climate variability strongly influence the people, infrastructure, and economy of Alaska. However, the sparse observational network in Alaska limits our understanding of meteorological variability, particularly of precipitation processes that influence the hydrologic cycle. Here, a new 14-yr (September 2002–August 2016) dataset for Alaska with 4-km grid spacing is described and evaluated. The dataset, generated with the Weather Research and Forecasting (WRF) Model, is useful for gaining insight into meteorological and hydrologic processes, and provides a baseline against which to measure future environmental change. The WRF fields are evaluated at annual, seasonal, and daily time scales against observation-based gridded and station records of 2-m air temperature, precipitation, and snowfall. Pattern correlations between annual mean WRF and observation-based gridded fields are r = 0.89 for 2-m temperature, r = 0.75 for precipitation, r = 0.82 for snow-day fraction, r = 0.55 for first snow day of the season, and r = 0.71 for last snow day of the season. A shortcoming of the WRF dataset is that spring snowmelt occurs too early over a majority of the state, due partly to positive 2-m temperature biases in winter and spring. Strengths include an improved representation of the interannual variability of 2-m temperature and precipitation and accurately simulated (relative to regional station observations) winter and summer precipitation maxima. This initial evaluation suggests that the 4-km WRF climate dataset robustly simulates meteorological processes and recent climatic variability in Alaska. The dataset may be particularly useful for applications that require high-temporal-frequency weather fields, such as driving hydrologic or glacier models. Future studies will provide further insight on its ability to represent other aspects of Alaska’s climate.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew J. Monaghan, monaghan@ucar.edu

Abstract

Weather and climate variability strongly influence the people, infrastructure, and economy of Alaska. However, the sparse observational network in Alaska limits our understanding of meteorological variability, particularly of precipitation processes that influence the hydrologic cycle. Here, a new 14-yr (September 2002–August 2016) dataset for Alaska with 4-km grid spacing is described and evaluated. The dataset, generated with the Weather Research and Forecasting (WRF) Model, is useful for gaining insight into meteorological and hydrologic processes, and provides a baseline against which to measure future environmental change. The WRF fields are evaluated at annual, seasonal, and daily time scales against observation-based gridded and station records of 2-m air temperature, precipitation, and snowfall. Pattern correlations between annual mean WRF and observation-based gridded fields are r = 0.89 for 2-m temperature, r = 0.75 for precipitation, r = 0.82 for snow-day fraction, r = 0.55 for first snow day of the season, and r = 0.71 for last snow day of the season. A shortcoming of the WRF dataset is that spring snowmelt occurs too early over a majority of the state, due partly to positive 2-m temperature biases in winter and spring. Strengths include an improved representation of the interannual variability of 2-m temperature and precipitation and accurately simulated (relative to regional station observations) winter and summer precipitation maxima. This initial evaluation suggests that the 4-km WRF climate dataset robustly simulates meteorological processes and recent climatic variability in Alaska. The dataset may be particularly useful for applications that require high-temporal-frequency weather fields, such as driving hydrologic or glacier models. Future studies will provide further insight on its ability to represent other aspects of Alaska’s climate.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew J. Monaghan, monaghan@ucar.edu
Save
  • Balshi, M. S., A. D. McGuire, P. Duffy, M. Flannigan, J. Walsh, and J. Melillo, 2009: Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Global Change Biol., 15, 578600, https://doi.org/10.1111/j.1365-2486.2008.01679.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnhart, K. R., R. S. Anderson, I. Overeem, C. Wobus, G. D. Clow, and F. E. Urban, 2014: Modeling erosion of ice-rich permafrost bluffs along the Alaskan Beaufort Sea coast. J. Geophys. Res. Earth Surf., 119, 11551179, https://doi.org/10.1002/2013JF002845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beamer, J. P., D. F. Hill, A. Arendt, and G. E. Liston, 2016: High-resolution modeling of coastal freshwater discharge and glacier mass balance in the Gulf of Alaska watershed. Water Resour. Res., 52, 38883909, https://doi.org/10.1002/2015WR018457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, K. E., A. J. Cannon, and L. Hinzman, 2015: Historical trends and extremes in boreal Alaska river basins. J. Hydrol., 527, 590607, https://doi.org/10.1016/j.jhydrol.2015.04.065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bieniek, P. A., and Coauthors, 2012: Climate divisions for Alaska based on objective methods. J. Appl. Meteor. Climatol., 51, 12761289, https://doi.org/10.1175/JAMC-D-11-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bieniek, P. A., J. E. Walsh, R. L. Thoman, and U. S. Bhatt, 2014: Using climate divisions to analyze variations and trends in Alaska temperature and precipitation. J. Climate, 27, 28002818, https://doi.org/10.1175/JCLI-D-13-00342.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bieniek, P. A., and Coauthors, 2015: Climate drivers linked to changing seasonality of Alaska coastal tundra vegetation productivity. Earth Interact., 19, https://doi.org/10.1175/EI-D-15-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bieniek, P. A., U. S. Bhatt, J. E. Walsh, T. S. Rupp, J. Zhang, J. R. Krieger, and R. Lader, 2016: Dynamical downscaling of ERA-Interim temperature and precipitation for Alaska. J. Appl. Meteor. Climatol., 55, 635654, https://doi.org/10.1175/JAMC-D-15-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., A. B. Wilson, L.-S. Bai, G. W. K. Moore, and P. Bauer, 2016: A comparison of the regional Arctic System Reanalysis and the global ERA-Interim reanalysis for the Arctic. Quart. J. Roy. Meteor. Soc., 142, 644658, https://doi.org/10.1002/qj.2527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brubaker, M. Y., J. N. Bell, J. E. Berner, and J. A. Warren, 2011: Climate change health assessment: A novel approach for Alaska native communities. Int. J. Circumpolar Health, 70, 266273, https://doi.org/10.3402/ijch.v70i3.17820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassano, E. N., J. J. Cassano, and M. Nolan, 2011: Synoptic weather pattern controls on temperature in Alaska. J. Geophys. Res., 116, D11108, https://doi.org/10.1029/2010JD015341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassano, E. N., J. J. Cassano, M. W. Seefeldt, W. J. Gutowski, and J. M. Glisan, 2016: Synoptic conditions during summertime temperature extremes in Alaska. Int. J. Climatol., 37, 36943713, https://doi.org/10.1002/joc.4949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassano, J. J., M. E. Higgins, and M. W. Seefeldt, 2011: Performance of the Weather Research and Forecasting Model for month-long pan-Arctic simulations. Mon. Wea. Rev., 139, 34693488, https://doi.org/10.1175/MWR-D-10-05065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassano, J. J., E. N. Cassano, M. W. Seefeldt, W. J. Gutowski, and J. M. Glisan, 2016: Synoptic conditions during wintertime temperature extremes in Alaska. J. Geophys. Res. Atmos., 121, 32413262, https://doi.org/10.1002/2015JD024404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2008: Temperature and pressure dependence of the rain-snow phase transition over land and ocean. Geophys. Res. Lett., 35, L12802, https://doi.org/10.1029/2008GL033295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derksen, C., and R. Brown, 2012: Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections. Geophys. Res. Lett., 39, L19504, https://doi.org/10.1029/2012GL053387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durre, I., M. J. Menne, B. E. Gleason, T. G. Houston, and R. S. Vose, 2010: Comprehensive automated quality assurance of daily surface observations. J. Appl. Meteor. Climatol., 49, 16151633, https://doi.org/10.1175/2010JAMC2375.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DuVivier, A. K., J. J. Cassano, A. Craig, J. Hamman, W. Maslowski, B. Nijssen, R. Osinski, and A. Roberts, 2016: Winter atmospheric buoyancy forcing and oceanic response during strong wind events around southeastern Greenland in the Regional Arctic System Model (RASM) for 1990–2010. J. Climate, 29, 975994, https://doi.org/10.1175/JCLI-D-15-0592.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fleming, M. D., F. S. Chapin, W. Cramer, G. L. Hufford, and M. C. Serreze, 2000: Geographic patterns and dynamics of Alaskan climate interpolated from a sparse station record. Global Change Biol., 6, 4958, https://doi.org/10.1046/j.1365-2486.2000.06008.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., and Coauthors, 2002: Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ., 83, 287302, https://doi.org/10.1016/S0034-4257(02)00078-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gesch, D., and S. Greenlee, 1999: GTOPO30 documentation. U.S. Geological Survey, https://webgis.wr.usgs.gov/globalgis/gtopo30/gtopo30.htm.

  • GINA, 2016: MODIS-derived snow metrics. Geographic Information Network of Alaska, http://www.gina.alaska.edu/projects/modis-derived-snow-metrics.

  • Glisan, J. M., W. J. Gutowski, J. J. Cassano, E. N. Cassano, and M. W. Seefeldt, 2016: Analysis of WRF extreme daily precipitation over Alaska using self-organizing maps. J. Geophys. Res. Atmos., 121, 77467761, https://doi.org/10.1002/2016JD024822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, W., F. J. Meyer, P. Webley, and D. Morton, 2013: Performance of the high-resolution atmospheric model HRRR-AK for correcting geodetic observations from spaceborne radars. J. Geophys. Res. Atmos., 118, 11 61111 624, https://doi.org/10.1002/2013JD020170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goudriaan, J., 1985: Crop Micrometeorology: A Simulation Study (in Dutch). Simulation Monogr., Wageningen University, 249 pp., http://edepot.wur.nl/166537.

  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henn, B., A. J. Newman, B. Livneh, C. Daly, and J. D. Lundquist, 2017: An assessment of differences in gridded precipitation datasets in complex terrain. J. Hydrol., 556, 12051219, https://doi.org/10.1016/j.jhydrol.2017.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, D. F., N. Bruhis, S. E. Calos, A. Arendt, and J. Beamer, 2015: Spatial and temporal variability of freshwater discharge into the Gulf of Alaska. J. Geophys. Res. Oceans, 120, 634646, https://doi.org/10.1002/2014JC010395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hines, K. M., and D. H. Bromwich, 2008: Development and testing of Polar Weather Research and Forecasting (WRF) Model. Part I: Greenland ice sheet meteorology. Mon. Wea. Rev., 136, 19711989, https://doi.org/10.1175/2007MWR2112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hines, K. M., D. H. Bromwich, L.-S. Bai, M. Barlage, and A. G. Slater, 2011: Development and testing of Polar WRF. Part III: Arctic land. J. Climate, 24, 2648, https://doi.org/10.1175/2010JCLI3460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinzman, L. D., and Coauthors, 2005: Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Climatic Change, 72, 251298, https://doi.org/10.1007/s10584-005-5352-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, J. B., A. Gelvin, and G. Schaefer, 2007: An engineering design study of electronic snow water equivalent sensor performance. 75th Annual Western Snow Conf., Kailua-Kona, HI, Western Snow Conference, 16–19, https://westernsnowconference.org/sites/westernsnowconference.org/PDFs/2007Johnson.pdf.

  • Jones, P. D., 1994: Hemispheric surface air temperature variations: A reanalysis and an update to 1993. J. Climate, 7, 17941802, https://doi.org/10.1175/1520-0442(1994)007<1794:HSATVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kane, D. L., and S. L. Stuefer, 2015: Reflecting on the status of precipitation data collection in Alaska: A case study. Hydrol. Res., 46, 478493, https://doi.org/10.2166/nh.2014.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kienzle, S. W., 2008: A new temperature based method to separate rain and snow. Hydrol. Processes, 22, 50675085, https://doi.org/10.1002/hyp.7131.

  • Klemp, J. B., W. C. Skamarock, and J. Dudhia, 2007: Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Mon. Wea. Rev., 135, 28972913, https://doi.org/10.1175/MWR3440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lader, R., U. S. Bhatt, J. E. Walsh, T. S. Rupp, and P. A. Bieniek, 2016: Two-meter temperature and precipitation from atmospheric reanalysis evaluated for Alaska. J. Appl. Meteor. Climatol., 55, 901922, https://doi.org/10.1175/JAMC-D-15-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, C., J. Zhu, A. E. Miller, P. Kirchner, and T. L. Willson, 2015: Deriving snow cover metrics for Alaska from MODIS. Remote Sens., 7, 12 96112 985, https://doi.org/10.3390/rs71012961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, https://doi.org/10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., J. R. Krieger, and J. Zhang, 2014: Toward producing the Chukchi–Beaufort High-Resolution Atmospheric Reanalysis (CBHAR) via the WRFDA data assimilation system. Mon. Wea. Rev., 142, 788805, https://doi.org/10.1175/MWR-D-13-00063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, C., and H. Kunstmann, 2012: The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeor., 13, 13971420, https://doi.org/10.1175/JHM-D-11-088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malingowski, J., D. Atkinson, J. Fochesatto, J. Cherry, and E. Stevens, 2014: An observational study of radiation temperature inversions in Fairbanks, Alaska. Polar Sci., 8, 2439, https://doi.org/10.1016/j.polar.2014.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallard, M. S., C. G. Nolte, O. R. Bullock, T. L. Spero, and J. Gula, 2014: Using a coupled lake model with WRF for dynamical downscaling. J. Geophys. Res. Atmos., 119, 71937208, https://doi.org/10.1002/2014JD021785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markon, C. J., S. F. Trainor, and F. S. Chapin III, Eds., 2012: The United States National Climate Assessment—Alaska technical regional report. U.S. Geological Survey Circular 1379, 148 pp., http://pubs.er.usgs.gov/publication/cir1379.

    • Crossref
    • Export Citation
  • Marshall, S. J., M. J. Sharp, D. O. Burgess, and F. S. Anslow, 2007: Near-surface-temperature lapse rates on the Prince of Wales Icefield, Ellesmere Island, Canada: Implications for regional downscaling of temperature. Int. J. Climatol., 27, 385398, https://doi.org/10.1002/joc.1396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McAfee, S. A., G. Guentchev, and J. K. Eischeid, 2013: Reconciling precipitation trends in Alaska: 1. Station-based analyses. J. Geophys. Res. Atmos., 118, 75237541, https://doi.org/10.1002/jgrd.50572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McAfee, S. A., G. Guentchev, and J. Eischeid, 2014a: Reconciling precipitation trends in Alaska: 2. Gridded data analyses. J. Geophys. Res. Atmos., 119, 13 82013 837, https://doi.org/10.1002/2014JD022461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McAfee, S. A., J. Walsh, and T. S. Rupp, 2014b: Statistically downscaled projections of snow/rain partitioning for Alaska. Hydrol. Processes, 28, 39303946, https://doi.org/10.1002/hyp.9934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melvin, A. M., J. Murray, B. Boehlert, J. A. Martinich, L. Rennels, and T. S. Rupp, 2017: Estimating wildfire response costs in Alaska’s changing climate. Climatic Change, 141, 783795, https://doi.org/10.1007/s10584-017-1923-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and Coauthors, 2012a: Global Historical Climatology Network - Daily (GHCN-Daily), version 3.22. National Centers for Environmental Information, accessed 1 August 2016, https://doi.org/10.7289/V5D21VHZ.

    • Crossref
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012b: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mölders, N., and G. Kramm, 2010: A case study on wintertime inversions in interior Alaska with WRF. Atmos. Res., 95, 314332, https://doi.org/10.1016/j.atmosres.2009.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., M. P. Clark, M. P. Barlage, A. J. Newman, L. Xue, J. R. Arnold, and R. M. Rasmussen, 2016: High-resolution climate simulations over Alaska: A community dataset, version 1. National Center for Atmospheric Research Earth System Grid, accessed 1 December 2016, https://doi.org/10.5065/D61Z42T0.

    • Crossref
    • Export Citation
  • NASA JPL, 2015: GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis (v4.1). NASA Jet Propulsion Laboratory, accessed 30 October 2016, https://doi.org/10.5067/GHGMR-4FJ04.

    • Crossref
    • Export Citation
  • Niu, G.-Y., and Z.-L. Yang, 2007: An observation-based formulation of snow cover fraction and its evaluation over large North American river basins. J. Geophys. Res., 112, D21101, https://doi.org/10.1029/2007JD008674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA/NCEI, 2016: Global surface summary of the day. National Centers for Environmental Information, ftp://ftp.ncdc.noaa.gov/pub/data/gsod.

  • NRCS, 2016: All sensors—SNOTEL data. National Resources Conservation Service, http://www.wcc.nrcs.usda.gov/snow/snotel-data.html.

  • NRCS, 2017: Snow surveys and water supply forecasting. National Resources Conservation Service, https://www.wcc.nrcs.usda.gov/factpub/sect_4b.html.

  • Park, T., and Coauthors, 2016: Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ. Res. Lett., 11, 084001, https://doi.org/10.1088/1748-9326/11/8/084001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., G. J. Holland, R. M. Rasmussen, J. Done, K. Ikeda, M. P. Clark, and C. H. Liu, 2013: Importance of regional climate model grid spacing for the simulation of heavy precipitation in the Colorado headwaters. J. Climate, 26, 48484857, https://doi.org/10.1175/JCLI-D-12-00727.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, https://doi.org/10.1175/2010JCLI3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rattenbury, K., K. Kielland, G. Finstad, and W. Schneider, 2009: A reindeer herder’s perspective on caribou, weather and socio-economic change on the Seward Peninsula, Alaska. Polar Res., 28, 7188, https://doi.org/10.1111/j.1751-8369.2009.00102.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, G. R., and T. L. Wurtz, 1994: Record interior Alaska snowfall effect on tree breakage. N. J. Appl. For., 11, 138140.

  • Schaefer, G. L., and R. F. Paetzold, 2000: SNOTEL (SNOwpack TELemetry) and SCAN (soil climate analysis network). Automated Weather Stations for Applications in Agriculture and Water Resources Management: Current Use and Future, AGM-3 and WMO/TD-1074, K. G. Hubbard and M. V. K. Sivakumar, Eds., World Meteorological Organization, 256 pp., http://www.wamis.org/agm/pubs/agm3/WMO-TD1074.pdf.

  • Shulski, M., J. Walsh, E. Stevens, and R. Thoman, 2010: Diagnosis of extended cold-season temperature anomalies in Alaska. Mon. Wea. Rev., 138, 453462, https://doi.org/10.1175/2009MWR3039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J. J., G. L. Hufford, M. D. Fleming, J. S. Berg, and J. B. Ashton, 2002: Long-term climate patterns in Alaskan surface temperature and precipitation and their biological consequences. IEEE Trans. Geosci. Remote Sens., 40, 11641184, https://doi.org/10.1109/TGRS.2002.1010902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J. J., G. L. Hufford, C. Daly, J. S. Berg, and M. D. Fleming, 2005: Comparing maps of mean monthly surface temperature and precipitation for Alaska and adjacent areas of Canada produced by two different methods. Arctic, 58, 137161.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://dx.doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • SNAP, 2016: Scenarios Network for Alaska and Arctic Planning Data. University of Alaska Fairbanks, accessed 1 August 2016, http://ckan.snap.uaf.edu/dataset.

  • Stafford, J. M., G. Wendler, and J. Curtis, 2000: Temperature and precipitation of Alaska: 50 year trend analysis. Theor. Appl. Climatol., 67, 3344, https://doi.org/10.1007/s007040070014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, R. S., E. G. Dutton, J. M. Harris, and D. Longenecker, 2002: Earlier spring snowmelt in northern Alaska as an indicator of climate change. J. Geophys. Res., 107, https:/doi.org/10.1029/2000JD000286.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2006: How often does it rain? J. Climate, 19, 916934, https://doi.org/10.1175/JCLI3672.1.

  • Sundqvist, H., E. Berge, and J. E. Kristjánsson, 1989: Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Wea. Rev., 117, 1641, https://doi.org/10.1175/1520-0493(1989)117<1641:CACPSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., 2014: Intensified warming of the Arctic: Causes and impacts on middle latitudes. Global Planet. Change, 117, 5263, https://doi.org/10.1016/j.gloplacha.2014.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., P. A. Bieniek, B. Brettschneider, E. S. Euskirchen, R. Lader, and R. L. Thoman, 2017: The exceptionally warm winter of 2015/16 in Alaska. J. Climate, 30, 20692088, https://doi.org/10.1175/JCLI-D-16-0473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendler, G., and M. Shulski, 2009: A century of climate change for Fairbanks, Alaska. Arctic, 62, 295300, https://doi.org/10.14430/arctic149.

  • Yang, D., B. E. Goodison, J. R. Metcalfe, V. S. Golubev, R. Bates, T. Pangburn, and C. L. Hanson, 1998: Accuracy of NWS 8” standard nonrecording precipitation gauge: Results and application of WMO intercomparison. J. Atmos. Oceanic Technol., 15, 5468, https://doi.org/10.1175/1520-0426(1998)015<0054:AONSNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., Z. Pu, and X. Zhang, 2013: Examination of errors in near-surface temperature and wind from WRF numerical simulations in regions of complex terrain. Wea. Forecasting, 28, 893914, https://doi.org/10.1175/WAF-D-12-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., U. S. Bhatt, W. V. Tangborn, and C. S. Lingle, 2007: Climate downscaling for estimating glacier mass balances in northwestern North America: Validation with a USGS benchmark glacier. Geophys. Res. Lett., 34, L21505, https://doi.org/10.1029/2007GL031139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., and Coauthors, 2013: Beaufort and Chukchi Seas Mesoscale Meteorology Modeling Study: Final project report. Bureau of Ocean Energy Management Rep. 2013-0119, 204 pp., https://www.boem.gov/BOEM-2013-0119.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1407 639 130
PDF Downloads 691 155 8