Position of the South Atlantic Anticyclone and Its Impact on Surface Conditions across Brazil

Joshua M. Gilliland Department of Geography and Anthropology, Louisiana State University, Baton Rouge, Louisiana

Search for other papers by Joshua M. Gilliland in
Current site
Google Scholar
PubMed
Close
and
Barry D. Keim Department of Geography and Anthropology, Louisiana State University, Baton Rouge, Louisiana

Search for other papers by Barry D. Keim in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the surface wind characteristics of Brazil on the basis of the location of the maximum high pressure center in the South Atlantic basin (SAB), known as the South Atlantic anticyclone (SAA), from three reanalysis datasets for the period of 1980–2014. Linear wind speed trends determined for Brazil are geographically related to surface and macroscale atmospheric conditions found in the SAB. The daily mean position of the SAA exhibited a latitudinal poleward shift for all seasons, and a longitudinal trend was dependent upon extratropical activity found in the SAB. Results also show that wind speed and sea level pressure for northern Brazil are dependent upon the latitudinal position of the SAA. Consequently, surface wind correlations for southern Brazil tend to be related to changes in the longitudinal position of the SAA, which result from transient anticyclones migrating over the SAB. An examination of positive and negative wind anomalies shows that shifts in the position of the SAA are coupled with changes in sea level pressure for northern Brazil and air temperature for southern Brazil. From these findings, a surface wind analysis was performed to demonstrate how the geographical location of the SAA affects wind speed anomalies across Brazil and the SAB. Results from this study can assist in understanding how atmospheric systems change within the SAB so that forthcoming socioeconomic and climate-related causes of wind for the country of Brazil can be known.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joshua M. Gilliland, jgilli7@lsu.edu

Abstract

This study examines the surface wind characteristics of Brazil on the basis of the location of the maximum high pressure center in the South Atlantic basin (SAB), known as the South Atlantic anticyclone (SAA), from three reanalysis datasets for the period of 1980–2014. Linear wind speed trends determined for Brazil are geographically related to surface and macroscale atmospheric conditions found in the SAB. The daily mean position of the SAA exhibited a latitudinal poleward shift for all seasons, and a longitudinal trend was dependent upon extratropical activity found in the SAB. Results also show that wind speed and sea level pressure for northern Brazil are dependent upon the latitudinal position of the SAA. Consequently, surface wind correlations for southern Brazil tend to be related to changes in the longitudinal position of the SAA, which result from transient anticyclones migrating over the SAB. An examination of positive and negative wind anomalies shows that shifts in the position of the SAA are coupled with changes in sea level pressure for northern Brazil and air temperature for southern Brazil. From these findings, a surface wind analysis was performed to demonstrate how the geographical location of the SAA affects wind speed anomalies across Brazil and the SAB. Results from this study can assist in understanding how atmospheric systems change within the SAB so that forthcoming socioeconomic and climate-related causes of wind for the country of Brazil can be known.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joshua M. Gilliland, jgilli7@lsu.edu
Save
  • Abhishek, A., J.-Y. Lee, T. C. Keener, and Y. J. Yang, 2010: Long-term wind speed variations for three Midwestern U.S. cities. J. Air Waste Manage. Assoc., 60, 10571064, https://doi.org/10.3155/1047-3289.60.9.1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alberta, T. L., S. J. Colucci, and J. C. Davenport, 1991: Rapid 500-mb cyclogenesis and anticyclogenesis. Mon. Wea. Rev., 119, 11861204, https://doi.org/10.1175/1520-0493(1991)119<1186:RMCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., and S. C. Sherwood, 2008: Warming maximum in the tropical upper troposphere deduced from thermal winds. Nat. Geosci., 1, 399403, https://doi.org/10.1038/ngeo208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ANEEL, 2017: Generation information bank. Accessed 27 October 2017, http://www2.aneel.gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm/.

  • Archer, C. L., and K. Caldeira, 2008: Historical trends in the jet streams. Geophys. Res. Lett., 35, L08803, https://doi.org/10.1029/2008GL033614.

  • Bell, G. D., and L. F. Bosart, 1989: A 15-year climatology of Northern Hemisphere closed cyclone and anticyclone centers. Mon. Wea. Rev., 117, 21422163, https://doi.org/10.1175/1520-0493(1989)117<2142:AYCONH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blender, R., and M. Schubert, 2000: Cyclone tracking in different spatial and temporal resolutions. Mon. Wea. Rev., 128, 377384, https://doi.org/10.1175/1520-0493(2000)128<0377:CTIDSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bombardi, R. J., and L. M. V. Carvalho, 2011: The South Atlantic dipole and variations in the characteristics of the South American monsoon in the WCRP-CMIP3. Climate Dyn., 36, 20912102, https://doi.org/10.1007/s00382-010-0836-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cabos, W., and Coauthors, 2017: The South Atlantic anticyclone as a key player for the representation of the tropical Atlantic climate in coupled climate. Climate Dyn., 48, 40514069, https://doi.org/10.1007/s00382-016-3319-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo do Amarante, O. A., M. Brower, J. Zack, and A. Leite de Sá, 2001: Atlas of Brazilian wind potential. CRESESB, 44 pp., accessed 27 October 2017, http://www.cresesb.cepel.br/publicacoes/download/atlas_eolico/Atlas%20do%20Potencial%20Eolico%20Brasileiro.pdf.

  • Castro, J. S., R. Camargo, E. Marone, and H. H. Sepúlveda, 2015: Using the mean pressure gradient and NCEP/NCAR reanalysis to estimate the strength of the South Atlantic anticyclone. Dyn. Atmos. Oceans, 71, 8390, http://doi.org/10.1016/j.dynatmoce.2015.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., D. Li, and S. C. Pryor, 2013: Wind speed trends over China: Quantifying the magnitude and assessing causality. Int. J. Climatol., 33, 25792590, https://doi.org/10.1002/joc.3613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., B. Tan, N. G. Kvamstø, and O. M. Johannessen, 2014: Winter cyclone/anticyclone activity over China its relation to upper tropospheric jets. Tellus, 66A, 21889, https://doi.org/10.3402/tellusa.v66.21889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J., S.-W. Son, J. Lu, and S.-K. Min, 2014: Further observational evidence of Hadley cell widening in the Southern Hemisphere. Geophys. Res. Lett., 41, 25902597, https://doi.org/10.1002/2014GL059426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., B. P. Hayden, D. A. Gay, W. L. Phillips, and G. V. Jones, 1997: The North Atlantic subtropical anticyclone. J. Climate, 10, 728744, https://doi.org/10.1175/1520-0442(1997)010<0728:TNASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Degola, T. S. D., 2013: Impacts and variability of the South Atlantic subtropical anticyclone on Brazil in the present climate and in future scenarios. M.S. thesis, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, 112 pp.

  • De Lima Moscati, M. C., and M. A. Gan, 2007: Rainfall variability in the rainy season of semiarid zone of northeast Brazil (NEB) and its relation to wind regime. Int. J. Climatol., 27, 493512, https://doi.org/10.1002/joc.1408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Favre, A., and A. Gershunov, 2006: Extra-tropical cyclonic/anticyclonic activity in north-eastern Pacific and air temperatures extremes in western North America. Climate Dyn., 26, 617629, https://doi.org/10.1007/s00382-005-0101-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, G., J. Yu, Y. Zhang, S. Hu, R. Ouyang, and L. Wenbin, 2011: Temporal variation of wind speed in China for 1961–2007. Theor. Appl. Climatol., 104, 313324, https://doi.org/10.1007/s00704-010-0348-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., C. M. Johanson, J. M. Wallace, and T. Reichler, 2006: Enhanced mid-latitude tropospheric warming in satellite measurements. Science, 312, 1179, https://doi.org/10.1126/science.1125566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., L. F. Bosart, and A. R. Aiyyer, 2008: Closed anticyclones of the subtropics and midlatitudes: A 54-yr climatology (1950–2003) and three case studies. Synoptic–Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc., 349–392.

    • Crossref
    • Export Citation
  • Garreaud, R. D., 2000: Cold air incursions over subtropical South America: Mean structure and dynamics. Mon. Wea. Rev., 128, 25442559, https://doi.org/10.1175/1520-0493(2000)128<2544:CAIOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilliland, J. M., and B. D. Keim, 2018: Surface wind speed: Trend and climatology of Brazil from 1980–2014. Int. J. Climatol., 38, 1060–1073, https://doi.org/10.1002/joc.5237.

    • Search Google Scholar
    • Export Citation
  • Good, S. A., G. K. Corlett, J. J. Remedios, E. J. Noyes, and D. T. Llewellyn-Jones, 2007: The global trend in sea surface temperature from 20 years of Advanced Very High Resolution Radiometer data. J. Climate, 20, 12551264, https://doi.org/10.1175/JCLI4049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., and J. A. Carton, 2003: The intertropical convergence zone in the South Atlantic and the equatorial cold tongue. J. Climate, 16, 723733, https://doi.org/10.1175/1520-0442(2003)016<0723:TICZIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harman, J. R., 1987: Mean monthly North American anticyclone frequencies, 1950–79. Mon. Wea. Rev., 115, 28402848, https://doi.org/10.1175/1520-0493(1987)115<2840:MMNAAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, V. L., R. B. Pierce, T. D. Fairlie, and M. H. Hitchman, 2002: A climatology of stratospheric polar vortices and anticyclones. J. Geophys. Res., 107, 4442, https://doi.org/10.1029/2001JD001471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 1976: Variations in low-latitude circulation and extreme climatic events in the tropical. Americas. J. Atmos. Sci., 33, 202215, https://doi.org/10.1175/1520-0469(1976)033<0202:VILLCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 1984: Interannual variability and annual cycle: Mechanisms of circulation and climate in the tropical Atlantic sector. Mon. Wea. Rev., 112, 10971107, https://doi.org/10.1175/1520-0493(1984)112<1097:IVAACM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 1985: Regional circulation systems. Climate and Circulation of the Tropics, D. Reidel, 107–209.

    • Crossref
    • Export Citation
  • Hastenrath, S., and L. Heller, 1977: Dynamics of climatic hazards in northeast Brazil. Quart. J. Roy. Meteor. Soc., 103, 7792, https://doi.org/10.1002/qj.49710343505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., and L. Greischar, 1993: Circulation mechanisms related to northeast Brazil rainfall anomalies. J. Geophys. Res., 98, 50935102, https://doi.org/10.1029/92JD02646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hatzaki, M., H. A. Flocas, I. Simmonds, J. Kouroutzoglou, K. Keay, and I. Rudeva, 2014: Seasonal aspects of an objective climatology of anticyclones affecting the Mediterranean. J. Climate, 27, 92729289, https://doi.org/10.1175/JCLI-D-14-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hewston, R., and S. Dorling, 2011: An analysis of observed daily maximum wind gusts in the UK. J. Wind Eng. Ind. Aerodyn., 99, 845856, https://doi.org/10.1016/j.jweia.2011.06.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ioannidou, L., and M. K. Yau, 2008: A climatology of the Northern Hemisphere winter anticyclones. J. Geophys. Res., 113, D08119, https://doi.org/10.1029/2007JD008409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, E. R. K., 1999: A Climatological Study of the South Atlantic Subtropical Anticyclone and Its Influence on Frontal Systems. Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, 126 pp.

  • Ito, E. R. K., and T. Ambrizzi, 2000: Climatology of South Atlantic subtropical high position for the winter months. Annals XI Latin American and Iberian Meteorology Congress, Rio de Janeiro, Brazil, Brazilian Society of Meteorology, 860–865.

  • Jiang, Y., Y. Luo, Z. Zhao, and S. Tao, 2010: Changes in wind speed over China during 1956–2004. Theor. Appl. Climatol., 99, 421430, https://doi.org/10.1007/s00704-009-0152-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, D. A., and I. Simmonds, 1994: A climatology of Southern Hemisphere anticyclones. Climate Dyn., 10, 333348, https://doi.org/10.1007/BF00228031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M. W., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapala, A., H. Mächel, and H. Flohn, 1998: Behaviour of the centres of action above the Atlantic since 1881. Part II: Associations with regional climate anomalies. Int. J. Climatol., 18, 2336, https://doi.org/10.1002/(SICI)1097-0088(199801)18:1<23::AID-JOC226>3.0.CO;2-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. Griffin, 202 pp.

  • Klein, W. H., 1958: The frequency of cyclones and anticyclones in relation to the mean circulation. J. Meteor., 15, 98102, https://doi.org/10.1175/1520-0469(1958)015<0098:TFOCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klink, K., 1999: Trends in mean monthly maximum and minimum surface wind speeds in the coterminous United States, 1961 to 1990. Climate Res., 13, 193205, https://doi.org/10.3354/cr013193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leighton, R. M., 1994: Monthly anticyclonic and cyclonicity in the Southern Hemisphere: Averages for January, April, July, and October. Int. J. Climatol., 14, 3345, https://doi.org/10.1002/joc.3370140103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leighton, R. M., and H. Nowak, 1995: Variations in seasonal and annual anticyclonicity across the eastern Australian region during the 29-year period 1965–1993. Aust. Meteor. Mag., 44, 299308.

    • Search Google Scholar
    • Export Citation
  • Li, X., S. Zhong, X. Bian, and W. E. Heilman, 2010: Climate and climate variability of the wind power resources in the Great Lakes region of the United States. J. Geophys. Res., 115, D18107, https://doi.org/10.1029/2009JD013415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, C., K. Yang, J. Qin, and R. Fu, 2013: Observed coherent trends of surface and upper-air wind speed over China since 1960. J. Climate, 26, 28912903, https://doi.org/10.1175/JCLI-D-12-00093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, https://doi.org/10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Lübbecke, J. F., N. J. Burls, C. J. C. Reason, and M. L. McPhaden, 2014: Variability in the South Atlantic anticyclone and the Atlantic Niño mode. J. Climate, 27, 81358150, https://doi.org/10.1175/JCLI-D-14-00202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, C., B. Timbal, and H. Nguyen, 2014: The expanding tropics: A critical assessment of the observational and modeling studies. Wiley Interdiscip. Rev.: Climate Change, 5, 89112, https://doi.org/10.1002/wcc.251.

    • Search Google Scholar
    • Export Citation
  • Lupo, A. R., J. J. Nocera, L. F. Bosart, E. G. Hoffman, and D. J. Knight, 2001: South American cold surges: Types, composites, and case studies. Mon. Wea. Rev., 129, 10211041, https://doi.org/10.1175/1520-0493(2001)129<1021:SACSTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mächel, H., A. Kapala, and H. Flohn, 1998: Behaviour of the centres of action above the Atlantic since 1881. Part I: Characteristics of seasonal and interannual variability. Int. J. Climatol., 18, 122, https://doi.org/10.1002/(SICI)1097-0088(199801)18:1<1::AID-JOC225>3.0.CO;2-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Marengo, J. A., and C. C. Camargo, 2008: Surface air temperature trends in Southern Brazil for 1960–2002. Int. J. Climatol., 28, 893904, https://doi.org/10.1002/joc.1584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., T. Ambrizzi, G. Kiladis, and B. Liebmann, 2002: Upper-air wave trains over the Pacific Ocean and wintertime cold surge in tropical-subtropical South America leading to freezes in southern and southeastern Brazil. Theor. Appl. Climatol., 73, 223242, https://doi.org/10.1007/s00704-001-0669-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., and Coauthors, 2010: Future change of climate in South America in the late twenty-first century: Intercomparison of scenarios from three regional climate models. Climate Dyn., 35, 10731097, https://doi.org/10.1007/s00382-009-0721-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J Climate, 16, 41344143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, R. J., and I. Simmonds, 1991: A numerical scheme for tracking cyclone centres from digital data. Part I: Development and operation of the scheme. Aust. Meteor. Mag., 39, 155166.

    • Search Google Scholar
    • Export Citation
  • Nchaba, T., M. Mpholo, and C. Lennard, 2017: Long-term austral summer wind speed trends over southern Africa. Int. J. Climatol., 37, 28502862, https://doi.org/10.1002/joc.4883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nnamchi, H. C., J. Li, and R. Anyadike, 2011: Does a dipole mode really exist in the South Atlantic Ocean? J. Geophys. Res., 116, D15104, https://doi.org/10.1029/2010JD015579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuñez, M. N., S. A. Solman, and M. F. Cabré, 2009: Regional climate change experiments over southern South America. II: Climate change scenarios in the late twenty-first century. Climate Dyn., 32, 10811095, https://doi.org/10.1007/s00382-008-0449-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, S. S., T. Hawes, S. J. Colucci, and B. P. Hayden, 1989: Climatology of 500 mb cyclones and anticyclones, 1950–85. Mon. Wea. Rev., 117, 558570, https://doi.org/10.1175/1520-0493(1989)117<0558:COMCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pereira, E. B., F. R. Martins, M. P. Pes, E. I. D. Segundo, and A. D. Lyra, 2013: The impacts of global climate changes on the wind power density in Brazil. Renewable Energy, 49, 107110, https://doi.org/10.1016/j.renene.2012.01.053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pereira de Lucena, A. F., A. S. Szklo, R. Schaeffer, and R. M. Dutra, 2010: The vulnerability of wind power to climate change in Brazil. Renewable Energy, 35, 904912, https://doi.org/10.1016/j.renene.2009.10.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pes, M. P., E. B. Pereira , J. A. Marengo, F. R. Martins, D. Heinemann, and M. Schmidt, 2017: Climate trends on the extreme winds in Brazil. Renewable Energy, 109, 110120, https://doi.org/10.1016/j.renene.2016.12.101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., and T. Ambrizzi, 2003: Variability of Southern Hemisphere cyclone and anticyclone behavior: Further analysis. J. Climate, 16, 10751083, https://doi.org/10.1175/1520-0442(2003)016<1075:VOSHCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., and T. Ambrizzi, 2005: Dynamical conditions and synoptic tracks associated with different types of cold surge over tropical South America. Int. J. Climatol., 25, 215241, https://doi.org/10.1002/joc.1080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., I. Simmonds, and J. A. Renwick, 2007: Southern Hemisphere cyclones and anticyclones: Recent trends and links with decadal variability in the Pacific Ocean. Int. J. Climatol., 27, 14031419, https://doi.org/10.1002/joc.1477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and J. Ledolter, 2010: Addendum to “Wind speeds trends over the contiguous United States.” J. Geophys. Res., 115, D10103, https://doi.org/10.1029/2009JD013281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reboita, M. S., M. A. Gan, R. P. Rocha, and T. Ambrizzi, 2010: Precipitation regimes in South America: A bibliography review. Rev. Bras. Meteor., 25, 185204, https://doi.org/10.1590/S0102-77862010000200004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reboita, M. S., R. P. da Rocha, T. Ambrizzi, and C. D. Gouveia, 2015: Trend and teleconnection patterns in the climatology of extratropical cyclones over the Southern Hemisphere. Climate Dyn., 45, 19291944, https://doi.org/10.1007/s00382-014-2447-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reboita, M. S., T. R. Amaro, and M. R. de Souza, 2018: Winds: Intensity and power density simulated by RegCM4 over South America in present and future climate. Climate Dyn., https://doi.org/10.1007/s00382-017-3913-5, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahsamanoglou, H. S., 1990: A contribution to the study of action centres in the North Atlantic. Int. J. Climatol., 10, 247261, https://doi.org/10.1002/joc.3370100303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sansigolo, C. A., and M. T. Kayano, 2010: Trends of seasonal maximum and minimum temperatures and precipitation in Southern Brazil for 1913–2006 period. Theor. Appl. Climatol., 101, 209216, https://doi.org/10.1007/s00704-010-0270-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santos, A. T. S., and C. M. S. Silva, 2013: Seasonality, interannual variability, and linear tendency of wind speeds in the northeast Brazil from 1986 to 2011. Sci. World J., 490857, https://doi.org/10.1155/2013/490857.

    • Search Google Scholar
    • Export Citation
  • Satyamurty, P., C. A. Nombre, and P. L. Silva Dias, 1998: South America. Meteorology of the Southern Hemisphere, Meteor. Monogr., No. 49, Amer. Meteor. Soc., 119–139.

    • Crossref
    • Export Citation
  • Schwerdtfeger, W., 1976: Introduction. Climates of Central and South America, W. Schwerdtfeger, Ed., Vol. 12, World Survey of Climatology, Elsevier, 1–12.

  • Seidel, D. J., and W. J. Randel, 2007: Recent widening of the tropical belt: Evidence from tropopause observations. J. Geophys. Res., 112, D20113, https://doi.org/10.1029/2007JD008861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, https://doi.org/10.1038/ngeo.2007.38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seth, A., M. Rojas, and S. A. Rauscher, 2010: CMIP3 projected changes in the annual cycle of the South American monsoon. Climatic Change, 98, 331357, https://doi.org/10.1007/s10584-009-9736-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M., 1996: A climatology of anticyclones and blocking for the Southern Hemisphere. Mon. Wea. Rev., 124, 245263, https://doi.org/10.1175/1520-0493(1996)124<0245:ACOAAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M., 1997: Objective identification of cyclones and their circulation intensity, and climatology. Wea. Forecasting, 12, 595612, https://doi.org/10.1175/1520-0434(1997)012<0595:OIOCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soares, W. R., and J. A. Marengo, 2009: Assessments of moisture fluxes east of the Andes in South America in a global warming scenario. Int. J. Climatol., 29, 13951414, http://dx.doi.org/10.1002/joc.1800.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solman, S. A., and I. Orlanski, 2014: Poleward shift and change of frontal activity in the Southern Hemisphere over the last 40 years. J. Atmos. Sci., 71, 539552, https://doi.org/10.1175/JAS-D-13-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprenger, M., O. Martius, and J. Arnold, 2013: Cold surge episodes over southeastern Brazil—A potential vorticity perspective. Int. J. Climatol., 33, 27582767, https://doi.org/10.1002/joc.3618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sterl, A., and W. Hazeleger, 2003: Coupled variability and air–sea interactions in the South Atlantic Ocean. Climate Dyn., 21, 559571, https://doi.org/10.1007/s00382-003-0348-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. George, S., and S. A. Wolfe, 2009: El Niño stills winter winds across the southern Canadian Prairies. Geophys. Res. Lett., 36, L23806, https://doi.org/10.1029/2009GL041282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, X., K. H. Cook, and E. K. Vizy, 2017: The south Atlantic subtropical high: Climatology and interannual variability. J. Climate, 30, 32793296, https://doi.org/10.1175/JCLI-D-16-0705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taljaard, J. J., 1967: Development, distribution and movement of cyclones and anticyclones in the Southern Hemisphere during the IGY. J. Appl. Meteor. Climatol., 6, 973987, https://doi.org/10.1175/1520-0450(1967)006<0973:DDAMOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taljaard, J. J., 1972: Synoptic meteorology of the Southern Hemisphere. Meteorology of the Southern Hemisphere, Meteor. Monogr., No. 49, Amer. Meteor. Soc., 139–211.

    • Crossref
    • Export Citation
  • Tuller, S. E., 2004: Measured wind speed trends on the west coast of Canada. Int. J. Climatol., 24, 13591374, https://doi.org/10.1002/joc.1073.

  • Venegas, L. A., A. Mysak, and D. N. Straub, 1997: Atmosphere–ocean coupled variability in the South Atlantic. J. Climate, 10, 29042920, https://doi.org/10.1175/1520-0442(1997)010<2904:AOCVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, L. A., and Coauthors, 2005: Observed trends in indices of daily temperature extremes in South America 1960–2000. J. Climate, 18, 50115023, https://doi.org/10.1175/JCLI3589.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., and K. H. Cook, 2016: Understanding long-term (1982–2013) multi-decadal changes in the equatorial and subtropical South Atlantic climate. Climate Dyn., 46, 20872113, https://doi.org/10.1007/s00382-015-2691-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voskresenskaya, E., M. Bardin, and O. Kovalenko, 2016: Climate variability of winter anticyclones in the Mediterranean-Black Sea region. Quat. Int., 409, 7074, https://doi.org/10.1016/j.quaint.2015.09.096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., V. R. Swail, and F. W. Zwiers, 2006: Climatology and changes of extratropical cyclone activity: Comparison of ERA-40 with NCEP/NCAR reanalysis for 1958–2001. J. Climate, 19, 31453166, https://doi.org/10.1175/JCLI3781.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., and C. Schwierz, 2006: Surface cyclones in the ERA-40 Dataset (1958–2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 24862507, https://doi.org/10.1175/JAS3766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolter, K., and M. S. Timlin, 2011: El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol., 31, 10741087, https://doi.org/10.1002/joc.2336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., and Coauthors, 2012: The decreasing wind speed in southwestern China during 1969–2009 and possible causes. Quat. Int., 263, 7184, https://doi.org/10.1016/j.quaint.2012.02.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Q., S. Kang, W.-A. Flügel, N. Pepin, Y. Yan, and J. Huang, 2010: Decreasing wind speed and weakening latitudinal surface pressure gradients in the Tibetan Plateau. Climate Res., 42, 5764, https://doi.org/10.3354/cr00864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Q., K. Fraedrich, J. Min, S. Kang, X. Zhu, N. Pepine, and L. Zhanga, 2014: Observed surface wind speed in the Tibetan Plateau since 1980 and its physical causes. Int. J. Climatol., 34, 18731882, https://doi.org/10.1002/joc.3807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarrin, A., H. Ghaemi, M. Azadi, and M. Farajzadeh, 2010: The spatial pattern of summertime subtropical anticyclones over Asia and Africa: A climatological review. Int. J. Climatol., 30, 159173, https://doi.org/10.1002/joc.1879.

    • Search Google Scholar
    • Export Citation
  • Zishka, K. M., and P. J. Smith, 1980: The climatology of cyclones and anticyclones over North America and surrounding ocean environs for January and July, 1950–77. Mon. Wea. Rev., 108, 387401, https://doi.org/10.1175/1520-0493(1980)108<0387:TCOCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4756 481 34
PDF Downloads 2816 317 17