Cross-Scale Precipitation Variability in a Semiarid Catchment Area on the Western Slopes of the Central Andes

Katja Trachte Laboratory for Climatology and Remote Sensing, Philipps-University Marburg, Marburg, Germany

Search for other papers by Katja Trachte in
Current site
Google Scholar
PubMed
Close
,
Jochen Seidel Institute for Modelling Hydraulic and Environmental Systems, Department of Hydrology and Geohydrology, University of Stuttgart, Stuttgart, Germany

Search for other papers by Jochen Seidel in
Current site
Google Scholar
PubMed
Close
,
Rafael Figueroa Centro de Investigación Ambiental para el Desarrollo, Universidad Nacional Santiago Antúnez de Mayolo, Huaraz, Peru

Search for other papers by Rafael Figueroa in
Current site
Google Scholar
PubMed
Close
,
Marco Otto Institute of Ecology, Technische Universität Berlin, Berlin, Germany

Search for other papers by Marco Otto in
Current site
Google Scholar
PubMed
Close
, and
Joerg Bendix Laboratory for Climatology and Remote Sensing, Philipps-University Marburg, Marburg, Germany

Search for other papers by Joerg Bendix in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Spatiotemporal precipitation patterns were investigated on the western slopes of the central Andes Mountains by applying EOF and cluster analysis as well as the Weather Research and Forecasting (WRF) Model. In the semiarid catchment area in the highlands of Lima, Peru, the precipitation is assumed to be a cross-scale interplay of large-scale dynamics, varying sea surface temperatures (SSTs), and breeze-dominated slope flows. The EOF analysis was used to encompass and elucidate the upper-level circulation patterns dominating the transport of moisture. To delineate local precipitation regimes, a partitioning cluster analysis was carried out, which additionally should illustrate local effects such as the altitudinal gradient of the Andes. The results demonstrated that especially during the transition to the dry season, synoptic-scale circulation aloft controls the precipitation (correlation coefficients between 0.6 and 0.9), whereas in the remaining seasons the slope breezes due to the altitudinal gradient mainly determine the precipitation behavior. Further analysis with regard to the spatiotemporal precipitation variability revealed an inversion of the precipitation distribution along the elevational gradient within the study area, mainly during February (29%) and March (35%), that showed correlations with coastal SST patterns ranging between 0.56 and 0.67. WRF simulations of the underlying mechanisms disclosed that the large-scale circulation influences the thermally induced upslope flows while the strength of southeastern low-level winds related to the coastal SSTs caused a blocking of easterlies in the middle troposphere through a reduced anticyclonic effect. This interplay enables the generation of precipitation in the usually drier environment at lower elevations, which leads to a decrease in rainfall with increasing elevation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Katja Trachte, katja.trachte@geo.uni-marburg.de

Abstract

Spatiotemporal precipitation patterns were investigated on the western slopes of the central Andes Mountains by applying EOF and cluster analysis as well as the Weather Research and Forecasting (WRF) Model. In the semiarid catchment area in the highlands of Lima, Peru, the precipitation is assumed to be a cross-scale interplay of large-scale dynamics, varying sea surface temperatures (SSTs), and breeze-dominated slope flows. The EOF analysis was used to encompass and elucidate the upper-level circulation patterns dominating the transport of moisture. To delineate local precipitation regimes, a partitioning cluster analysis was carried out, which additionally should illustrate local effects such as the altitudinal gradient of the Andes. The results demonstrated that especially during the transition to the dry season, synoptic-scale circulation aloft controls the precipitation (correlation coefficients between 0.6 and 0.9), whereas in the remaining seasons the slope breezes due to the altitudinal gradient mainly determine the precipitation behavior. Further analysis with regard to the spatiotemporal precipitation variability revealed an inversion of the precipitation distribution along the elevational gradient within the study area, mainly during February (29%) and March (35%), that showed correlations with coastal SST patterns ranging between 0.56 and 0.67. WRF simulations of the underlying mechanisms disclosed that the large-scale circulation influences the thermally induced upslope flows while the strength of southeastern low-level winds related to the coastal SSTs caused a blocking of easterlies in the middle troposphere through a reduced anticyclonic effect. This interplay enables the generation of precipitation in the usually drier environment at lower elevations, which leads to a decrease in rainfall with increasing elevation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Katja Trachte, katja.trachte@geo.uni-marburg.de
Save
  • Aceituno, P., 1988: On the functioning of the Southern Oscillation in the South American sector. Part I: Surface climate. Mon. Wea. Rev., 116, 505524, https://doi.org/10.1175/1520-0493(1988)116<0505:OTFOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aceituno, P., and A. Montecinos, 2000: Diurnal cycle over the South American Altiplano: Comparison of NCEP/NCAR reanalysis with upper-air observations during the Visviri field experiment. Preprints, Sixth Int. Conf. on Southern Hemisphere Meteorology and Oceanography, Santiago, Chile, Amer. Meteor. Soc., 412–413.

  • Aguirre, C., Ó. Pizarro, P. T. Strub, R. Garreaud, and J. A. Barth, 2012: Seasonal dynamics of the near-surface alongshore flow off central Chile. J. Geophys. Res., 117, C01006, https://doi.org/10.1029/2011JC007379.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, https://doi.org/10.1038/nature04141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourrel, L., and Coauthors, 2015: Low-frequency modulation and trend of the relationship between ENSO and precipitation along the northern to centre Peruvian Pacific coast. Hydrol. Processes, 29, 12521266, https://doi.org/10.1002/hyp.10247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., M. Vuille, H. F. Diaz, and W. Vergara, 2006: Threats to water supplies in the tropical Andes. Science, 312, 17551756, https://doi.org/10.1126/science.1128087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chamorro Chávez, A., 2015: Stochastic and hydrological modelling for climate change prediction in the Lima region, Peru. Ph.D. dissertation, Universität Stuttgart, 119 pp., http://dx.doi.org/10.18419/opus-638.

    • Crossref
    • Export Citation
  • Dewitte, B., S. Illig, L. Renault, K. Goubanova, K. Takahashi, D. Gushchina, K. Mosquera, and S. Purca, 2011: Modes of covariability between sea surface temperature and wind stress intraseasonal anomalies along the coast of Peru from satellite observations (2000–2008). J. Geophys. Res., 116, C04028, https://doi.org/10.1029/2010JC006495.

    • Search Google Scholar
    • Export Citation
  • Drenkhan, F., M. Carey, C. Huggel, J. Seidel, and M. T. Oré, 2015: The changing water cycle: Climatic and socioeconomic drivers of water-related changes in the Andes of Peru. Wiley Interdiscip. Rev.: Water, 2, 715733, https://doi.org/10.1002/wat2.1105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eda, L. E. H., and W. Chen, 2010: Integrated water resources management in Peru. Procedia Environ. Sci., 2, 340348, https://doi.org/10.1016/j.proenv.2010.10.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., 1981: Thermally driven wind variability in the planetary boundary layer above Lima, Peru. J. Geophys. Res., 86, 20052016, https://doi.org/10.1029/JC086iC03p02005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 1999: Multiscale analysis of the summertime precipitation over the central Andes. Mon. Wea. Rev., 127, 901921, https://doi.org/10.1175/1520-0493(1999)127<0901:MAOTSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and P. Aceituno, 2001: Interannual rainfall variability over the South American Altiplano. J. Climate, 14, 27792789, https://doi.org/10.1175/1520-0442(2001)014<2779:IRVOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., M. Vuille, and A. C. Clement, 2003: The climate of the Altiplano: Observed current conditions and mechanisms of past changes. Palaeogeogr. Palaeoclimatol. Palaeoecol., 194, 522, https://doi.org/10.1016/S0031-0182(03)00269-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., M. Vuille, R. Compagnucci, and J. Marengo, 2009: Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol., 281, 180195, https://doi.org/10.1016/j.palaeo.2007.10.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houston, J., and A. J. Hartley, 2003: The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. Int. J. Climatol., 23, 14531464, https://doi.org/10.1002/joc.938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illig, S., and Coauthors, 2014: Forcing mechanisms of intraseasonal SST variability off central Peru in 2000–2008. J. Geophys. Res. Oceans, 119, 35483573, https://doi.org/10.1002/2013JC009779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufman, L., and P. Rousseeuw, 1987: Clustering by means of medoids. Statistical Data Analysis Based on the L1 -Norm and Related Methods, Y. Dodge, Ed., North-Holland, 405–416.

  • Lavado Casimiro, W. S., J. Ronchail, D. Labat, J. C. Espinoza, and J. L. Guyot, 2012: Basin-scale analysis of rainfall and runoff in Peru (1969–2004): Pacific, Titicaca and Amazonas drainages. Hydrol. Sci. J., 57, 625642, https://doi.org/10.1080/02626667.2012.672985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenters, J. D., and K. H. Cook, 1997: On the origin of the Bolivian high and related circulation features of the South American climate. J. Atmos. Sci., 54, 656678, https://doi.org/10.1175/1520-0469(1997)054<0656:OTOOTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenters, J. D., and K. H. Cook, 1999: Summertime precipitation variability over South America: Role of the large-scale circulation. Mon. Wea. Rev., 127, 409431, https://doi.org/10.1175/1520-0493(1999)127<0409:SPVOSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lettau, H. H., 1967: Small to large-scale features of boundary layer structure over mountain slopes. Proc. Symp. on Mountain Meteorology, Vol. 26, Fort Collins, CO, Department of Atmospheric Science, Colorado State University, 1–73.

  • Lynch, B. D., 2012: Vulnerabilities, competition and rights in a context of climate change toward equitable water governance in Peru’s Rio Santa Valley. Global Environ. Change, 22, 364373, https://doi.org/10.1016/j.gloenvcha.2012.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., C. R. Mechoso, H. Xiao, C.-M. Wu, Y. Xue, and F. De Sales, 2010: Connection between the South Pacific anti-cyclone, Peruvian stratocumulus, and the South American monsoon system. CLIVAR Exchanges, Vol. 15, International CLIVAR Project Office, Southampton, United Kingdom, 569–572.

  • McGlone, D., and M. Vuille, 2012: The associations between El Niño–Southern Oscillation and tropical South American climate in a regional climate model. J. Geophys. Res., 117, D06105, https://doi.org/10.1029/2011JD017066.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., D. Slayback, and K. Yager, 2014: Characteristics of precipitation features and annual rainfall during the TRMM era in the central Andes. J. Climate, 27, 39824001, https://doi.org/10.1175/JCLI-D-13-00592.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz, R., 2008: Diurnal cycle of surface winds over the subtropical southeast Pacific. J. Geophys. Res., 113, D13107, https://doi.org/10.1029/2008JD009957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neukom, R., M. Rohrer, P. Calanca, N. Salzmann, C. Huggel, D. Acuña, D. A. Christie, and M. S. Morales, 2015: Facing unprecedented drying of the central Andes? Precipitation variability over the period AD 1000–2100. Environ. Res. Lett., 10, 084017, https://doi.org/10.1088/1748-9326/10/8/084017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OCHA, 2017: Peru: rainy season as of 10 May 2017. U.N. Office for the Coordination of Humanitarian Affairs Situation Rep. 10, 15 pp., https://reliefweb.int/sites/reliefweb.int/files/resources/redhum-pe-informe_de_situacion_10-eng-ocha-20170512.pdf.

  • Perry, L. B., A. Seimon, and G. M. Kelly, 2014: Precipitation delivery in the tropical high Andes of southern Peru: New findings and paleoclimatic implications. Int. J. Climatol., 34, 197215, https://doi.org/10.1002/joc.3679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, L. B., and Coauthors, 2017: Characteristics of precipitating storms in glacierized tropical Andean cordilleras of Peru and Bolivia. Ann. Amer. Assoc. Geogr., 107, 309322, https://doi.org/10.1080/24694452.2016.1260439.

    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., and R. D. Garreaud, 2014: A synoptic climatology of the near-surface wind along the west coast of South America. Int. J. Climatol., 34, 780792, https://doi.org/10.1002/joc.3724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and R. A. Houze Jr., 2011: Orogenic convection in subtropical South America as seen by the TRMM satellite. Mon. Wea. Rev., 139, 23992420, https://doi.org/10.1175/MWR-D-10-05006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rau, P., L. Bourrel, D. Labat, P. Melo, B. Dewitte, F. Frappart, W. Lavado, and O. Felipe, 2017: Regionalization of rainfall over the Peruvian Pacific slope and coast. Int. J. Climatol., 37, 143158, https://doi.org/10.1002/joc.4693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analysis of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 31923211, https://doi.org/10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutllant, J. A., H. Fuenzalida, and P. Aceituno, 2003: Climate dynamics along the arid northern coast of Chile: The 1997–1998 Dinámica del Clima de la Región de Antofagasta (DICLIMA) experiment. J. Geophys. Res., 108, 4538, https://doi.org/10.1029/2002JD003357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salzmann, N., C. Huggel, S. U. Nussbaumer, and G. Ziervogel, 2016: Setting the scene: Adapting to climate change—A large-scale challenge with local-scale impacts. Climate Change Adaptation Strategies—An Upstream–Downstream Perspective, N. Salzmann et al., Eds., Springer, 3–16.

    • Crossref
    • Export Citation
  • Schütze, M., 2015: Sustainable water and wastewater management in urban growth centres coping with climate change—Concepts for Lima Metropolitana (Perú). BMBF Final Rep., 55 pp., http://www.lima-water.de/en/documents.html?Menu=5.

  • Silva Dias, P. L., W. H. Schubert, and M. DeMaria, 1983: Large-scale response of the tropical atmosphere to transient convection. J. Atmos. Sci., 40, 26892707, https://doi.org/10.1175/1520-0469(1983)040<2689:LSROTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, K., 2005: The annual cycle of heat content in the Peru Current region. J. Climate, 18, 49374954, https://doi.org/10.1175/JCLI3572.1.

  • Takahashi, K., 2012: Thermotidal and land-heating forcing of the diurnal cycle of oceanic surface winds in the eastern tropical Pacific. Geophys. Res. Lett., 39, L04805, https://doi.org/10.1029/2011GL050692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2A, https://ams.confex.com/ams/pdfpapers/69061.pdf.

  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vera, C., and Coauthors, 2006: Toward a unified view of the American monsoon systems. J. Climate, 19, 49775000, https://doi.org/10.1175/JCLI3896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viviroli, D., H. H. Dürr, B. Messerli, M. Meybeck, and R. Weingartner, 2007: Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res., 43, W07447, https://doi.org/10.1029/2006WR005653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuille, M., and F. Keimig, 2004: Interannual variability of summertime convective cloudiness and precipitation in the central Andes derived from ISCCP-B3 data. J. Climate, 17, 33343348, https://doi.org/10.1175/1520-0442(2004)017<3334:IVOSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuille, M., R. S. Bradley, and F. Keimig, 2000a: Climate variability in the Andes of Ecuador and its relation to tropical Pacific and Atlantic sea surface temperature anomalies. J. Climate, 13, 25202535, https://doi.org/10.1175/1520-0442(2000)013<2520:CVITAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuille, M., R. S. Bradley, and F. Keimig, 2000b: Interannual climate variability in the central Andes and its relation to tropical Pacific and Atlantic forcing. J. Geophys. Res., 105, 12 44712 460, https://doi.org/10.1029/2000JD900134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuille, M., G. Kaser, and I. Juen, 2008: Glacier mass balance variability in the Cordillera Blanca, Peru and its relationship with climate and the large-scale circulation. Global Planet. Change, 62, 1428, https://doi.org/10.1016/j.gloplacha.2007.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and P. C. Fiedler, 2006: ENSO variability and the eastern tropical Pacific: A review. Prog. Oceanogr., 69, 239266, https://doi.org/10.1016/j.pocean.2006.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 315 104 8
PDF Downloads 202 58 6