A Characterization of the Delaware Sea Breeze Using Observations and Modeling

Christopher P. Hughes Department of Geography, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware

Search for other papers by Christopher P. Hughes in
Current site
Google Scholar
PubMed
Close
and
Dana E. Veron Department of Geography, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware

Search for other papers by Dana E. Veron in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Sea-breeze circulations are a prominent source of diurnal wind variability along coastlines throughout the world. For Delaware, the sea breeze is the largest source of variability in the coastal wind field. We developed a detailed, year-round sea-breeze climatology for the Delaware coastline using 9 years of meteorological station data and an objective sea-breeze detection algorithm. Sea-breeze fronts were identified and characterized by timing, speed, and duration as well as the resulting temperature and humidity changes. The observed temperature change associated with the Delaware sea-breeze front varied spatially, as well as with season, time of day, location, and developmental stage of the front. The observed sea breeze also had some unique features because of the location of southern Delaware on the Delmarva Peninsula and the complicated shape of the local coastline. Details of the summertime sea breeze were further explored using simulations with the Weather Research and Forecasting Model for June–August of 2000–09. Model-simulated sea-breeze characteristics were then compared with the observed sea-breeze climatology whenever possible. Results suggest that the mesoscale atmospheric model is capable of simulating the complex, observed spatial and temporal characteristics of the Delaware Sea breeze. However, the sea breeze in the model was weaker than that observed and tended to dissipate earlier in the afternoon, making it a challenging phenomenon to detect and characterize in the model. Improved detection and simulation of the sea-breeze fronts will increase our understanding of the impact this regional phenomenal has on the local climate and on the populations living by the coast.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dana E. Veron, dveron@udel.edu

Abstract

Sea-breeze circulations are a prominent source of diurnal wind variability along coastlines throughout the world. For Delaware, the sea breeze is the largest source of variability in the coastal wind field. We developed a detailed, year-round sea-breeze climatology for the Delaware coastline using 9 years of meteorological station data and an objective sea-breeze detection algorithm. Sea-breeze fronts were identified and characterized by timing, speed, and duration as well as the resulting temperature and humidity changes. The observed temperature change associated with the Delaware sea-breeze front varied spatially, as well as with season, time of day, location, and developmental stage of the front. The observed sea breeze also had some unique features because of the location of southern Delaware on the Delmarva Peninsula and the complicated shape of the local coastline. Details of the summertime sea breeze were further explored using simulations with the Weather Research and Forecasting Model for June–August of 2000–09. Model-simulated sea-breeze characteristics were then compared with the observed sea-breeze climatology whenever possible. Results suggest that the mesoscale atmospheric model is capable of simulating the complex, observed spatial and temporal characteristics of the Delaware Sea breeze. However, the sea breeze in the model was weaker than that observed and tended to dissipate earlier in the afternoon, making it a challenging phenomenon to detect and characterize in the model. Improved detection and simulation of the sea-breeze fronts will increase our understanding of the impact this regional phenomenal has on the local climate and on the populations living by the coast.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dana E. Veron, dveron@udel.edu
Save
  • Abbs, D. J., and W. L. Physick, 1992: Sea-breeze observations and modeling: A review. Aust. Meteor. Mag., 41, 719.

  • Adams, E., 1997: Four ways to win the sea breeze game. Sailing World, March, 44–49.

  • Alpert, P., and M. Rabinovich-Hadar, 2003: Pre- and post-sea-breeze frontal lines—A meso-γ-scale analysis over south Israel. J. Atmos. Sci., 60, 29943008, https://doi.org/10.1175/1520-0469(2003)060<2994:PAPFLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arrillaga, J. A., C. Yagüe, M. Sastre, and C. Román-Cascón, 2016: A characterisation of sea-breeze events in the eastern Cantabrian coast (Spain) from observational data and WRF simulations. Atmos. Res., 181, 265280, https://doi.org/10.1016/j.atmosres.2016.06.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arritt, R. W., 1989: Numerical modeling of the offshore extent of sea breezes. Quart. J. Roy. Meteor. Soc., 115, 547570, https://doi.org/10.1002/qj.49711548707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arritt, R. W., 1993: Effects of the large-scale flow on characteristic features of the sea breeze. J. Appl. Meteor., 32, 116125, https://doi.org/10.1175/1520-0450(1993)032<0116:EOTLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asimakopoulos, D. N., C. G. Helmis, K. H. Papadopoulos, J. A. Kalogiros, P. Kassomenos, and M. Petrakis, 1999: Inland propagation of sea breeze under opposing offshore wind. Meteor. Atmos. Phys., 70, 97110, https://doi.org/10.1007/s007030050027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., and R. M. Wakimoto, 1997: Influence of the synoptic-scale flow on sea breezes observed during CaPE. Mon. Wea. Rev., 125, 21122130, https://doi.org/10.1175/1520-0493(1997)125<2112:IOTSSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barbato, J. P., 1975: The sea breeze of the Boston area and its effect on the urban atmosphere. Ph.D. dissertation, Boston University, 223 pp.

  • Biggs, W. G., and M. E. Graves, 1962: A lake breeze index. J. Appl. Meteor., 1, 474480, https://doi.org/10.1175/1520-0450(1962)001<0474:ALBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigot, S., and O. Planchon, 2003: Identification and characterization of sea breeze days in northern France using singular value decomposition. Int. J. Climatol., 23, 13971405, https://doi.org/10.1002/joc.940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borne, K., D. Chen, and M. Nunez, 1998: A method for finding sea breeze days under stable synoptic conditions and its application to the Swedish west coast. Int. J. Climatol., 18, 901914, https://doi.org/10.1002/(SICI)1097-0088(19980630)18:8<901::AID-JOC295>3.0.CO;2-F.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bornstein, R. D., and W. T. Thompson, 1981: Effects of frictionally retarded sea breeze and synoptic frontal passages on sulfur dioxide concentrations in New York City. J. Appl. Meteor., 20, 843858, https://doi.org/10.1175/1520-0450(1981)020<0843:EOFRSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowers, L. A., 2004: The effect of sea surface temperature on sea breeze dynamics along the coast of New Jersey. M.S. thesis, Dept. of Oceanographic Studies, Rutgers, The State University of New Jersey, 148 pp.

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., S. Miao, M. Tewari, J.-W. Bao, and H. Jusaka, 2011: A numerical study of interactions between surface forcing and sea breeze circulations and their effects on stagnation in the greater Houston area. J. Geophys. Res., 116, D12105, https://doi.org/10.1029/2010JD015533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coccolo, S., J. Kämpf, J. L. Scartezzini, and D. Pearlmutter, 2016: Outdoor human comfort and thermal stress: A comprehensive review on models and standards. Urban Climate, 18, 3357, https://doi.org/10.1016/j.uclim.2016.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fett, R. W., and P. M. Tag, 1984: The sea-breeze-induced coastal calm zone as revealed by satellite data and simulated by a numerical model. Mon. Wea. Rev., 112, 12261233, https://doi.org/10.1175/1520-0493(1984)112<1226:TSBICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., 2005: Convective initiation ahead of the sea-breeze front. Mon. Wea. Rev., 133, 264278, https://doi.org/10.1175/MWR-2852.1.

  • Fovell, R. G., and P. S. Dailey, 2001: Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls. Part II: Alongshore ambient flow. Mon. Wea. Rev., 129, 20572072, https://doi.org/10.1175/1520-0493(2001)129<2057:NSOTIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franchito, S. H., V. B. Rao, J. L. Stech, and J. A. Lorenzzetti, 1998: The effect of coastal upwelling on the sea-breeze circulation at Cabo Frio, Brazil: A numerical experiment. Ann. Geophys., 16, 866871, https://doi.org/10.1007/s00585-998-0866-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gahmberg, M., H. Savijärvi, and M. Leskinen, 2010: The influence of synoptic scale flow on sea breeze induced surface winds and calm zones. Tellus, 62A, 209217, https://doi.org/10.1111/j.1600-0870.2009.00423.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannaros, T. M., D. Melas, I. A. Daglis, I. Keramitsoglou, and K. Kourtidis, 2013: Numerical study of the urban heat island over Athens (Greece) with the WRF Model. Atmos. Environ., 73, 103111, https://doi.org/10.1016/j.atmosenv.2013.02.055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilliam, R. C., S. Raman, and D. D. S. Niyogi, 2004: Observational and numerical study on the influence of large-scale flow direction and coastline shape on sea-breeze evolution. Bound.-Layer Meteor., 111, 275300, https://doi.org/10.1023/B:BOUN.0000016494.99539.5a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 1992: The eastern United States side-door cold front of 22 April 1987: A case study of an intense atmospheric density current. Mon. Wea. Rev., 120, 27382762, https://doi.org/10.1175/1520-0493(1992)120<2738:TEUSSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF Model. J. Appl. Meteor. Climatol., 49, 18311844, https://doi.org/10.1175/2010JAMC2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, C. P., and D. E. Veron, 2015: Characterization of low-level winds of southern and coastal Delaware. J. Appl. Meteor. Climatol., 54, 7793, https://doi.org/10.1175/JAMC-D-14-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Crossref
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., and D. A. R. Kristovich, 2012: Observations of urban heat island influence on lake-breeze frontal movement. J. App. Meteor. Climatol., 51, 702710, https://doi.org/10.1175/JAMC-D-11-0166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khan, B. A., 2010: Sea breeze circulation in the Auckland region: Observational data analysis and numerical modeling. Ph.D. thesis, University of Canterbury, 262 pp.

  • Kozo, T. L., 1982: An observational study of sea breezes along the Alaskan Beaufort Sea coast: Part I. J. Appl. Meteor., 21, 891905, https://doi.org/10.1175/1520-0450(1982)021<0891:AOSOSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laird, N. F., D. A. R. Kristovich, X.-Z. Liang, R. W. Arritt, and K. Labas, 2001: Lake Michigan lake breezes: Climatology, local forcing, and synoptic environment. J. Appl. Meteor., 40, 409424, https://doi.org/10.1175/1520-0450(2001)040<0409:LMLBCL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazon, J., J. I. Rojas, J. Jou, A. Valle, D. Olmeda, and C. Sanchez, 2015: An assessment of the sea breeze energy potential using small wind turbines in peri-urban coastal areas. J. Wind Eng. Ind. Aerodyn., 139, 17, https://doi.org/10.1016/j.jweia.2015.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muscarella, P. A., N. P. Barton, B. L. Lipphardt Jr., D. E. Veron, K. C. Wong, and A. D. Kirwan Jr., 2011: Surface currents and winds at the Delaware Bay mouth. Cont. Shelf Res., 31, 12821293, https://doi.org/10.1016/j.csr.2011.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neumann, J., 1977: On the rotation rate of the direction of sea and land breezes. J. Atmos. Sci., 34, 19131917, https://doi.org/10.1175/1520-0469(1977)034<1913:OTRROT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2018: Northeast regional land cover change report: 1996–2010. NOAA Rep., 13 pp., https://coast.noaa.gov/data/digitalcoast/pdf/landcover-report-northeast.pdf.

  • Papanastasiou, D. K., and D. Melas, 2009: Climatology and impact on air quality of sea breeze in an urban coastal environment. Int. J. Climatol., 29, 305315, https://doi.org/10.1002/joc.1707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papanastasiou, D. K., D. Melas, and I. Lissaridis, 2010: Study of wind field under sea breeze conditions; an application of WRF Model. Atmos. Res., 98, 102117, https://doi.org/10.1016/j.atmosres.2010.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perez, G. M. P., and M. A. F. Silva Dias, 2017: Long-term study of the occurrence and time of passage of sea breeze in São Paulo, 1960–2009. Int. J. Climatol., 37, 12101220, https://doi.org/10.1002/joc.5077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Physick, W. L., 1980: Numerical experiments on the inland penetration of the sea breeze. Quart. J. Roy. Meteor. Soc., 106, 735746, https://doi.org/10.1002/qj.49710645007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porson, A., D. G. Steyn, and G. Schayes, 2007: Sea breeze scaling from numerical model simulations. Part I: Pure sea breezes. Bound.-Layer Meteor., 122, 1729, https://doi.org/10.1007/s10546-006-9090-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rife, D. L., C. A. Davis, Y. Liu, and T. T. Warner, 2004: Predictability of low-level winds by mesoscale meteorological models. Mon. Wea. Rev., 132, 25532569, https://doi.org/10.1175/MWR2801.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryznar, E., and J. S. Touma, 1981: Characteristics of true lake breezes along the eastern shore of Lake Michigan. Atmos. Environ., 15, 12011205, https://doi.org/10.1016/0004-6981(81)90311-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savijärvi, H., and M. Alestalo, 1988: Sea breeze over a lake or gulf as the function of the prevailing flow. Beitr. Phys. Atmos., 61, 98104.

    • Search Google Scholar
    • Export Citation
  • Sikora, T. D., G. S. Young, and M. J. Bettwy, 2010: Analysis of the western shore Chesapeake Bay bay-breeze. Natl. Wea. Dig., 34, 5565, http://nwafiles.nwas.org/digest/papers/2010/Vol34No1/Pg55-Sikora-etal.pdf.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., 1994: Sea Breeze and Local Winds. Cambridge University Press, 234 pp.

  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srebric, J., M. Heidarinejad, and J. Liu, 2015: Building neighborhood emerging properties and their impacts on multi-scale modeling of building energy and airflows. Build. Environ., 91, 246262, https://doi.org/10.1016/j.buildenv.2015.02.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stauffer, R. M., and Coauthors, 2015: Bay breeze influence on surface ozone at Edgewood, MD during July 2011. J. Atmos. Chem., 72, 335353, https://doi.org/10.1007/s10874-012-9241-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, W. T., T. Holt, and J. Pullen, 2007: Investigation of a sea breeze front in an urban environment. Quart. J. Roy. Meteor. Soc., 133, 579594, https://doi.org/10.1002/qj.52.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tijm, A. B. C., A. J. Van Delden, and A. A. M. Holtslag, 1999: The inland penetration of sea breezes. Contrib. Atmos. Phys., 72, 317328.

    • Search Google Scholar
    • Export Citation
  • U.S. Census Bureau, 2011: 2010 census redistricting data (Public Law 94-171): Summary file. Tech. Doc., 199 pp.

  • Veron, D. E., J. F. Brodie, Y. A. Shiraz, and J. R. Gilchrist, 2018: Modeling the electrical grid impact of wind ramp-up forecasting error offshore in the mid-Atlantic region. J. Renewable Sustainable Energy, 10, 013308, https://doi.org/10.1063/1.4990684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voynova, Y. G., M. J. Oliver, and J. H. Sharp, 2013: Wind to zooplankton: Ecosystem-wide influence of seasonal wind-driven upwelling in and around the Delaware Bay. J. Geophys. Res. Oceans, 118, 64376450, https://doi.org/10.1002/2013JC008793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitney, M. M., and R. W. Garvine, 2006: Simulating the Delaware Bay buoyant outflow: Comparison with observations. J. Phys. Oceanogr., 36, 321, https://doi.org/10.1175/JPO2805.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xian, Z., and R. A. Pielke, 1991: The effects of width of landmasses on the development of sea breezes. J. Appl. Meteor., 30, 12801304, https://doi.org/10.1175/1520-0450(1991)030<1280:TEOWOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, H., and R. A. Anthes, 1987: The effect of latitude on the sea breeze. Mon. Wea. Rev., 115, 936956, https://doi.org/10.1175/1520-0493(1987)115<0936:TEOLOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 962 455 18
PDF Downloads 882 286 10