The Influence of a Lake-to-Lake Connection from Lake Huron on the Lake-Effect Snowfall in the Vicinity of Lake Ontario

Carrie E. Lang Department of Mathematics, State University of New York at Geneseo, Geneseo, New York
Department of Geography, State University of New York at Geneseo, Geneseo, New York

Search for other papers by Carrie E. Lang in
Current site
Google Scholar
PubMed
Close
,
Jessica M. McDonald Department of Atmospheric and Hydrologic Sciences, Saint Cloud State University, Saint Cloud, Minnesota

Search for other papers by Jessica M. McDonald in
Current site
Google Scholar
PubMed
Close
,
Lauriana Gaudet Department of Atmospheric Science, Lyndon State College, Lyndonville, Vermont

Search for other papers by Lauriana Gaudet in
Current site
Google Scholar
PubMed
Close
,
Dylan Doeblin Department of Geoscience, Hobart and William Smith Colleges, Geneva, New York

Search for other papers by Dylan Doeblin in
Current site
Google Scholar
PubMed
Close
,
Erin A. Jones Department of Earth Sciences, Millersville University of Pennsylvania, Millersville, Pennsylvania

Search for other papers by Erin A. Jones in
Current site
Google Scholar
PubMed
Close
, and
Neil F. Laird Department of Geoscience, Hobart and William Smith Colleges, Geneva, New York

Search for other papers by Neil F. Laird in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Lake-effect storms (LES) produce substantial snowfall in the vicinity of the downwind shores of the Great Lakes. These storms may take many forms; one type of LES event, lake to lake (L2L), occurs when LES clouds/snowbands develop over an upstream lake (e.g., Lake Huron), extend across an intervening landmass, and continue over a downstream lake (e.g., Lake Ontario). The current study examined LES snowfall in the vicinity of Lake Ontario and the atmospheric conditions during Lake Huron-to-Lake Ontario L2L days as compared with LES days on which an L2L connection was not present [i.e., only Lake Ontario (OLO)] for the cold seasons (October–March) from 2003/04 through 2013/14. Analyses of snowfall demonstrate that, on average, significantly greater LES snowfall totals occur downstream of Lake Ontario on L2L days than on OLO days. The difference in mean snowfall between L2L and OLO days approaches 200% in some areas near the Tug Hill Plateau and central New York State. Analyses of atmospheric conditions found more-favorable LES environments on L2L days relative to OLO days that included greater instability over the upwind lake, more near-surface moisture available, faster wind speeds, and larger surface heat fluxes over the upstream lake. Last, despite significant snowfalls on L2L days, their average contribution to the annual accumulated LES snowfall in the vicinity of Lake Ontario was found to be small (i.e., 25%–30%) because of the relatively infrequent occurrence of L2L days.

Current affiliation: Climate and Society Program, Columbia University, New York, New York.

Current affiliation: Atmospheric Science Program, Texas Tech University, Lubbock, Texas.

Current affiliation: Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Neil F. Laird, laird@hws.edu

Abstract

Lake-effect storms (LES) produce substantial snowfall in the vicinity of the downwind shores of the Great Lakes. These storms may take many forms; one type of LES event, lake to lake (L2L), occurs when LES clouds/snowbands develop over an upstream lake (e.g., Lake Huron), extend across an intervening landmass, and continue over a downstream lake (e.g., Lake Ontario). The current study examined LES snowfall in the vicinity of Lake Ontario and the atmospheric conditions during Lake Huron-to-Lake Ontario L2L days as compared with LES days on which an L2L connection was not present [i.e., only Lake Ontario (OLO)] for the cold seasons (October–March) from 2003/04 through 2013/14. Analyses of snowfall demonstrate that, on average, significantly greater LES snowfall totals occur downstream of Lake Ontario on L2L days than on OLO days. The difference in mean snowfall between L2L and OLO days approaches 200% in some areas near the Tug Hill Plateau and central New York State. Analyses of atmospheric conditions found more-favorable LES environments on L2L days relative to OLO days that included greater instability over the upwind lake, more near-surface moisture available, faster wind speeds, and larger surface heat fluxes over the upstream lake. Last, despite significant snowfalls on L2L days, their average contribution to the annual accumulated LES snowfall in the vicinity of Lake Ontario was found to be small (i.e., 25%–30%) because of the relatively infrequent occurrence of L2L days.

Current affiliation: Climate and Society Program, Columbia University, New York, New York.

Current affiliation: Atmospheric Science Program, Texas Tech University, Lubbock, Texas.

Current affiliation: Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Neil F. Laird, laird@hws.edu
Save
  • Alcott, T. I., and W. J. Steenburgh, 2013: Orographic influences on a Great Salt Lake–effect snowstorm. Mon. Wea. Rev., 141, 24322450, https://doi.org/10.1175/MWR-D-12-00328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ballentine, R. J., A. J. Stamm, E. E. Chermack, G. P. Byrd, and D. Schleede, 1998: Mesoscale model simulation of the 4–5 January 1995 lake-effect snowstorm. Wea. Forecasting, 13, 893920, https://doi.org/10.1175/1520-0434(1998)013<0893:MMSOTJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bard, L., and D. A. R. Kristovich, 2012: Trend reversal in Lake Michigan contribution to snowfall. J. Appl. Meteor. Climatol., 51, 20382046, https://doi.org/10.1175/JAMC-D-12-064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, A., 2003: National Operational Hydrologic Remote Sensing Center Snow Data Assimilation System (SNODAS) products at NSIDC. NSIDC Special Rep. 11, 19 pp., https://nsidc.org/sites/nsidc.org/files/files/nsidc_special_report_11.pdf.

  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boniface, K., J. J. Braun, J. L. McCreight, and F. G. Nievinski, 2015: Comparison of snow data assimilation system with GPS reflectometry snow depth in the western United States. Hydrol. Processes, 29, 24252437, https://doi.org/10.1002/hyp.10346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braham, R. R., Jr., and M. J. Dungey, 1984: Quantitative estimates of the effect of Lake Michigan on snowfall. J. Climate Appl. Meteor., 23, 940949, https://doi.org/10.1175/1520-0450(1984)023<0940:QEOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braham, R. R., Jr., and M. J. Dungey, 1995: Lake-effect snowfall over Lake Michigan. J. Appl. Meteor., 34, 10091019, https://doi.org/10.1175/1520-0450(1995)034<1009:LESOLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., T. A. Niziol, N. R. Donaldson, P. I. Joe, and V. T. Wood, 2007: Improved detection using negative elevation angles for mountaintop WSR-88Ds. Part III: Simulations of shallow convective activity over and around Lake Ontario. Wea. Forecasting, 22, 839852, https://doi.org/10.1175/WAF1019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burnett, A. W., M. E. Kirby, H. T. Mullins, and W. P. Patterson, 2003: Increasing Great Lake–effect snowfall during the twentieth century: A regional response to global warming? J. Climate, 16, 35353542, https://doi.org/10.1175/1520-0442(2003)016<3535:IGLSDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, L. S., and W. J. Steenburgh, 2017: The OWLeS IOP2b lake-effect snowstorm: Mechanisms contributing to the Tug Hill precipitation maximum. Mon. Wea. Rev., 145, 24612478, https://doi.org/10.1175/MWR-D-16-0461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, L. S., W. J. Steenburgh, P. G. Veals, T. W. Letcher, and J. R. Minder, 2016: Lake-effect mode and precipitation enhancement over the Tug Hill Plateau during OWLeS IOP2b. Mon. Wea. Rev., 144, 17291748, https://doi.org/10.1175/MWR-D-15-0412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, T. R., D. W. Cline, C. Olheiser, A. Rost, A. Nilsson, G. Fall, C. Bovitz, and L. Li, 2006: NOAA’s national snow analyses. Proc. 74th Annual Meeting of the Western Snow Conf., Las Cruces, NM, Western Snow Conference, 31–43, https://westernsnowconference.org/biblio/export/rtf/837.

  • Clow, D. W., L. Nanus, K. L. Verdin, and J. Schmidt, 2012: Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA. Hydrol. Processes, 26, 25832591, https://doi.org/10.1002/hyp.9385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., and N. F. Laird, 2008: The influence of ice cover on two lake-effect snow events over Lake Erie. Mon. Wea. Rev., 136, 27472763, https://doi.org/10.1175/2007MWR2310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewey, K. F., 1975: The prediction of Lake Huron lake-effect snowfall systems. J. Appl. Meteor., 14, 37, https://doi.org/10.1175/1520-0450(1975)014<0003:TPOLHL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eichenlaub, V. L., 1970: Lake effect snowfall to the lee of the Great Lakes: Its role in Michigan. Bull. Amer. Meteor. Soc., 51, 403412, https://doi.org/10.1175/1520-0477(1970)051<0403:LESTTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellis, A. W., and J. J. Johnson, 2004: Hydroclimatic analysis of snowfall trends associated with the North American Great Lakes. J. Hydrometeor., 5, 471486, https://doi.org/10.1175/1525-7541(2004)005<0471:HAOSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerbush, M. R., D. A. R. Kristovich, and N. F. Laird, 2008: Mesoscale boundary layer and heat flux variations over pack ice–covered Lake Erie. J. Appl. Meteor. Climatol., 47, 668683, https://doi.org/10.1175/2007JAMC1479.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartnett, J. J., J. M. Collins, M. A. Baxter, and D. P. Chambers, 2014: Spatiotemporal snowfall trends in central New York. J. Appl. Meteor. Climatol., 53, 26852697, https://doi.org/10.1175/JAMC-D-14-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hjelmfelt, M. R., 1990: Numerical study of the influence of environmental conditions on lake-effect snowstorms over Lake Michigan. Mon. Wea. Rev., 118, 138150, https://doi.org/10.1175/1520-0493(1990)118<0138:NSOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hjelmfelt, M. R., 1992: Orographic effects in simulated lake-effect snowstorms over Lake Michigan. Mon. Wea. Rev., 120, 373377, https://doi.org/10.1175/1520-0493(1992)120<0373:OEISLE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiusto, J. E., and M. L. Kaplan, 1972: Snowfall from lake-effect storms. Mon. Wea. Rev., 100, 6266, https://doi.org/10.1175/1520-0493(1972)100<0062:SFLS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, R. D., 1986: Mesoscale frequencies and seasonal snowfalls for different types of Lake Michigan snow storms. J. Climate Appl. Meteor., 25, 308312, https://doi.org/10.1175/1520-0450(1986)025<0308:MFASSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., and M. L. Spinar, 2005: Diurnal variations in lake-effect precipitation near the western Great Lakes. J. Hydrometeor., 6, 210218, https://doi.org/10.1175/JHM403.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., and Coauthors, 2017: The Ontario Winter Lake-Effect Systems field campaign: Scientific and educational adventures to further our knowledge and prediction of lake-effect storms. Bull. Amer. Meteor. Soc., 98, 315332, https://doi.org/10.1175/BAMS-D-15-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., L. Ensor, M. Palecki, D. Easterling, D. Robinson, K. G. Hubbard, and K. Redmond, 2009: A new look at lake-effect snowfall trends in the Laurentian Great Lakes using a temporally homogeneous data set. J. Great Lakes Res., 35, 2329, https://doi.org/10.1016/j.jglr.2008.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laird, N. F., D. A. R. Kristovich, and J. E. Walsh, 2003: Idealized model simulations examining the mesoscale structure of winter lake-effect circulations. Mon. Wea. Rev., 131, 206221, https://doi.org/10.1175/1520-0493(2003)131<0206:IMSETM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laird, N. F., N. D. Metz, L. Gaudet, C. Grasmick, L. Higgins, C. Loeser, and D. A. Zelinsky, 2017: Climatology of cold season lake-effect cloud bands for the North American Great Lakes. Int. J. Climatol., 37, 21112121, https://doi.org/10.1002/joc.4838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavoie, R. L., 1972: A mesoscale numerical model of lake-effect storms. J. Atmos. Sci., 29, 10251040, https://doi.org/10.1175/1520-0469(1972)029<1025:AMNMOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, G. E., R. B. Wagenmaker, and P. J. Sousounis, 2002: The influence of multiple lake interactions upon lake-effect storms. Mon. Wea. Rev., 130, 15101530, https://doi.org/10.1175/1520-0493(2002)130<1510:TIOMLI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., T. W. Letcher, L. S. Campbell, P. G. Veals, and W. J. Steenburgh, 2015: The evolution of lake-effect convection during landfall and orographic uplift as observed by profiling radars. Mon. Wea. Rev., 143, 44224442, https://doi.org/10.1175/MWR-D-15-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, R. A., 1966: Snowbelts of the Great Lakes. Weatherwise, 19, 248257, https://doi.org/10.1080/00431672.1966.10544204.

  • Niziol, T. A., W. R. Snyder, and J. S. Waldstreicher, 1995: Winter weather forecasting throughout the eastern United States. Part IV: Lake effect snow. Wea. Forecasting, 10, 6177, https://doi.org/10.1175/1520-0434(1995)010<0061:WWFTTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norton, D. C., and S. J. Bolsenga, 1993: Spatiotemporal trends in lake effect and continental snowfall in the Laurentian Great Lakes, 1951–1980. J. Climate, 6, 19431956, https://doi.org/10.1175/1520-0442(1993)006<1943:STILEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peace, R. L., Jr., and R. B. Sykes Jr., 1966: Mesoscale study of a lake effect snow storm. Mon. Wea. Rev., 94, 495507, https://doi.org/10.1175/1520-0493(1966)094<0495:MSOALE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodriguez, Y., D. A. R. Kristovich, and M. R. Hjelmfelt, 2007: Lake-to-lake cloud bands: Frequencies and locations. Mon. Wea. Rev., 135, 42024213, https://doi.org/10.1175/2007MWR1960.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rolph, G., A. Stein, and B. Stunder, 2017: Real-time Environmental Applications and Display System: READY. Environ. Modell. Software, 95, 210228, https://doi.org/10.1016/j.envsoft.2017.06.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. L., 2000: The role of upstream lakes in determining downstream severe lake-effect snowstorms. Ph.D. dissertation, University of Illinois at Urbana–Champaign, 183 pp., https://dissexpress.proquest.com/dxweb/results.html?QryTxt=&By=Rose%2C+Bruce+L.%2C+Jr.&Title=%22The+role+of+upstream+lakes%22&pubnum=.

  • Scott, R. W., and F. A. Huff, 1996: Impacts of the Great Lakes on regional climate conditions. J. Great Lakes Res., 22, 845863, https://doi.org/10.1016/S0380-1330(96)71006-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sousounis, P. J., and J. M. Fritsch, 1994: Lake-aggregate mesoscale disturbances. Part II: A case study of the effects on regional and synoptic-scale weather systems. Bull. Amer. Meteor. Soc., 75, 17931811, https://doi.org/10.1175/1520-0477(1994)075<1793:LAMDPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sousounis, P. J., and G. E. Mann, 2000: Lake-aggregate mesoscale disturbances. Part V: Impacts on lake-effect precipitation. Mon. Wea. Rev., 128, 728745, https://doi.org/10.1175/1520-0493(2000)128<0728:LAMDPV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 20592077, https://doi.org/10.1175/BAMS-D-14-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strommen, N. D., and J. R. Harman, 1978: Seasonally changing patterns of lake-effect snowfall in western lower Michigan. Mon. Wea. Rev., 106, 503509, https://doi.org/10.1175/1520-0493(1978)106<0503:SCPOLE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veals, P. G., and W. J. Steenburgh, 2015: Climatological characteristics and orographic enhancement of lake-effect precipitation east of Lake Ontario and over the Tug Hill Plateau. Mon. Wea. Rev., 143, 35913609, https://doi.org/10.1175/MWR-D-15-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villani, J. P., M. L. Jurewicz Sr., and K. Reinhold, 2017: Forecasting the inland extent of lake effect snow bands downwind of Lake Ontario. J. Oper. Meteor., 5, 5370, https://doi.org/10.15191/nwajom.2017.0505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiggin, B. L., 1950: Great snows of the Great Lakes. Weatherwise, 3, 123126, https://doi.org/10.1080/00431672.1950.9927065.

  • Wilson, J. W., 1977: Effect of Lake Ontario on precipitation. Mon. Wea. Rev., 105, 207214, https://doi.org/10.1175/1520-0493(1977)105<0207:EOLOOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, D. M., D. J. Posselt, and A. L. Steiner, 2013: Sensitivity of lake-effect snowfall to lake ice cover and temperature in the Great Lakes region. Mon. Wea. Rev., 141, 670689, https://doi.org/10.1175/MWR-D-12-00038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wrzesien, M. L., M. T. Durand, T. M. Pavelsky, I. M. Howat, S. A. Margulis, and L. S. Huning, 2017: Comparison of methods to estimate snow water equivalent at the mountain range scale: A case study of the California Sierra Nevada. J. Hydrometeor., 18, 11011119, https://doi.org/10.1175/JHM-D-16-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 471 158 8
PDF Downloads 434 113 6