Radar-Observed Characteristics of Precipitation in the Tropical High Andes of Southern Peru and Bolivia

Jason L. Endries Department of Geography and Planning, Appalachian State University, Boone, North Carolina

Search for other papers by Jason L. Endries in
Current site
Google Scholar
PubMed
Close
,
L. Baker Perry Department of Geography and Planning, Appalachian State University, Boone, North Carolina

Search for other papers by L. Baker Perry in
Current site
Google Scholar
PubMed
Close
,
Sandra E. Yuter Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University at Raleigh, Raleigh, North Carolina

Search for other papers by Sandra E. Yuter in
Current site
Google Scholar
PubMed
Close
,
Anton Seimon Department of Geography and Planning, Appalachian State University, Boone, North Carolina
Climate Change Institute, University of Maine, Orono, Maine

Search for other papers by Anton Seimon in
Current site
Google Scholar
PubMed
Close
,
Marcos Andrade-Flores Laboratorio de Física de la Atmosfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia

Search for other papers by Marcos Andrade-Flores in
Current site
Google Scholar
PubMed
Close
,
Ronald Winkelmann Laboratorio de Física de la Atmosfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia

Search for other papers by Ronald Winkelmann in
Current site
Google Scholar
PubMed
Close
,
Nelson Quispe Servicio Nacional de Meteorología e Hidrología, Lima, Peru

Search for other papers by Nelson Quispe in
Current site
Google Scholar
PubMed
Close
,
Maxwell Rado Universidad Nacional de San Antonio de Abád de Cusco, Cusco, Peru

Search for other papers by Maxwell Rado in
Current site
Google Scholar
PubMed
Close
,
Nilton Montoya Universidad Nacional de San Antonio de Abád de Cusco, Cusco, Peru

Search for other papers by Nilton Montoya in
Current site
Google Scholar
PubMed
Close
,
Fernando Velarde Laboratorio de Física de la Atmosfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia

Search for other papers by Fernando Velarde in
Current site
Google Scholar
PubMed
Close
, and
Sandro Arias Servicio Nacional de Meteorología e Hidrología, Lima, Peru

Search for other papers by Sandro Arias in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study used the first detailed radar measurements of the vertical structure of precipitation obtained in the central Andes of southern Peru and Bolivia to investigate the diurnal cycle and vertical structure of precipitation and melting-layer heights in the tropical Andes. Vertically pointing 24.1-GHz Micro Rain Radars in Cusco, Peru (3350 m MSL, August 2014–February 2015), and La Paz, Bolivia (3440 m MSL, October 2015–February 2017), provided continuous 1-min profiles of reflectivity and Doppler velocity. The time–height data enabled the determination of precipitation timing, melting-layer heights, and the identification of convective and stratiform precipitation features. Rawinsonde data, hourly observations of meteorological variables, and satellite and reanalysis data provided additional insight into the characteristics of these precipitation events. The radar data revealed a diurnal cycle with frequent precipitation and higher rain rates in the afternoon and overnight. Short periods with strong convective cells occurred in several storms. Longer-duration events with stratiform precipitation structures were more common at night than in the afternoon. Backward air trajectories confirmed previous work indicating an Amazon basin origin of storm moisture. For the entire dataset, median melting-layer heights were above the altitude of nearby glacier termini approximately 17% of the time in Cusco and 30% of the time in La Paz, indicating that some precipitation was falling as rain rather than snow on nearby glacier surfaces. During the 2015–16 El Niño, almost half of storms in La Paz had melting layers above 5000 m MSL.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jason Endries, endriesjl@appstate.edu

Abstract

This study used the first detailed radar measurements of the vertical structure of precipitation obtained in the central Andes of southern Peru and Bolivia to investigate the diurnal cycle and vertical structure of precipitation and melting-layer heights in the tropical Andes. Vertically pointing 24.1-GHz Micro Rain Radars in Cusco, Peru (3350 m MSL, August 2014–February 2015), and La Paz, Bolivia (3440 m MSL, October 2015–February 2017), provided continuous 1-min profiles of reflectivity and Doppler velocity. The time–height data enabled the determination of precipitation timing, melting-layer heights, and the identification of convective and stratiform precipitation features. Rawinsonde data, hourly observations of meteorological variables, and satellite and reanalysis data provided additional insight into the characteristics of these precipitation events. The radar data revealed a diurnal cycle with frequent precipitation and higher rain rates in the afternoon and overnight. Short periods with strong convective cells occurred in several storms. Longer-duration events with stratiform precipitation structures were more common at night than in the afternoon. Backward air trajectories confirmed previous work indicating an Amazon basin origin of storm moisture. For the entire dataset, median melting-layer heights were above the altitude of nearby glacier termini approximately 17% of the time in Cusco and 30% of the time in La Paz, indicating that some precipitation was falling as rain rather than snow on nearby glacier surfaces. During the 2015–16 El Niño, almost half of storms in La Paz had melting layers above 5000 m MSL.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jason Endries, endriesjl@appstate.edu
Save
  • Austin, P. M., and A. C. Bernis, 1950: A quantitative study of the “bright band” in radar precipitation echoes. J. Meteor., 7, 145151, https://doi.org/10.1175/1520-0469(1950)007<0145:AQSOTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bendix, J., R. Rollenbeck, and C. Reudenbach, 2006: Diurnal patterns of rainfall in a tropical Andean valley of southern Ecuador as seen by a vertically pointing K-band Doppler radar. Int. J. Climatol., 26, 829846, https://doi.org/10.1002/joc.1267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bendix, J., K. Trachte, J. Cermak, R. Rollenbeck, and T. Nauß, 2009: Formation of convective clouds at the foothills of the tropical eastern Andes (south Ecuador). J. Appl. Meteor. Climatol., 48, 16821695, https://doi.org/10.1175/2009JAMC2078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, https://doi.org/10.1038/nclimate2100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavez, S. P., and K. Takahashi, 2017: Orographic rainfall hot spots in the Andes-Amazon transition according to the TRMM precipitation radar and in situ data. J. Geophys. Res. Atmos., 122, 58705882, https://doi.org/10.1002/2016JD026282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1217–1308.

  • Das, S., and A. Maitra, 2011: Some melting layer characteristics at two tropical locations in Indian region. 30th Union Radio Scientifique Internationale General Assembly and Scientific Symp., Istanbul, Turkey, URSI, 1–4, https://doi.org/10.1109/URSIGASS.2011.6050805.

    • Crossref
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Endries, J. L., 2017: Radar-observed characteristics of precipitation in the tropical high Andes of southern Peru and Bolivia. M.A. thesis, Dept. of Geography and Planning, Appalachian State University, 52 pp., http://libres.uncg.edu/ir/asu/listing.aspx?id=21713.

  • Falvey, M., and R. D. Garreaud, 2005: Moisture variability over the South American Altiplano during the South American Low Level Jet Experiment (SALLJEX) observing season. J. Geophys. Res., 110, D22105, https://doi.org/10.1029/2005JD006152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francou, B., M. Vuille, P. Wagnon, J. Mendoza, and J.-E. Sicart, 2003: Tropical climate change recorded by a glacier in the central Andes during the last decades of the twentieth century: Chacaltaya, Bolivia, 16°S. J. Geophys. Res., 108, 4154, https://doi.org/10.1029/2002JD002959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 1999: Multiscale analysis of the summertime precipitation over the central Andes. Mon. Wea. Rev., 127, 901921, https://doi.org/10.1175/1520-0493(1999)127<0901:MAOTSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 2000: Intraseasonal variability of moisture and rainfall over the South American Altiplano. Mon. Wea. Rev., 128, 33373346, https://doi.org/10.1175/1520-0493(2000)128<3337:IVOMAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., M. Vuille, and A. C. Clement, 2003: The climate of the Altiplano: Observed current conditions and mechanisms of past changes. Palaeogeogr. Palaeoclimatol. Palaeoecol., 194, 522, https://doi.org/10.1016/S0031-0182(03)00269-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giovannettone, J. P., and A. P. Barros, 2009: Probing regional orographic controls of precipitation and cloudiness in the central Andes using satellite data. J. Hydrometeor., 10, 167182, https://doi.org/10.1175/2008JHM973.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanshaw, M. N., and B. Bookhagen, 2014: Glacial areas, lake areas, and snow lines from 1975 to 2012: Status of the Cordillera Vilcanota, including the Quelccaya ice cap, northern central Andes, Peru. Cryosphere, 8, 359376, https://doi.org/10.5194/tc-8-359-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196, https://doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2014: Cloud Dynamics. International Geophysics Series, Vol. 104, Academic Press, 496 pp.

  • Kaser, G., 1999: A review of the modern fluctuations of tropical glaciers. Global Planet. Change, 22, 93103, https://doi.org/10.1016/S0921-8181(99)00028-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., and Coauthors, 2011: Globally gridded satellite observations for climate studies. Bull. Amer. Meteor. Soc., 92, 893907, https://doi.org/10.1175/2011BAMS3039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krois, J., A. Schulte, E. P. Vigo, and C. C. Moreno, 2013: Temporal and spatial characteristics of rainfall patterns in the northern Sierra of Peru—A case study for La Niña to El Niño transitions from 2005 to 2010. Espacio Desarrollo, 25, 2348.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’hôte, Y., P. Chevallier, A. Coudrain, Y. Lejeune, and P. Etchevers, 2005: Relationship between precipitation phase and air temperature: Comparison between the Bolivian Andes and the Swiss Alps. Hydrol. Sci. J., 50, 989997, https://doi.org/10.1623/hysj.2005.50.6.989.

    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., M. Kunz, and W. Schmid, 1999: On the performance of a low-cost K-band Doppler radar for quantitative rain measurements. J. Atmos. Oceanic Technol., 16, 379387, https://doi.org/10.1175/1520-0426(1999)016<0379:OTPOAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., P. J. Neiman, B. Martner, A. B. White, D. J. Gottas, and F. M. Ralph, 2008: Rain versus snow in the Sierra Nevada, California: Comparing Doppler profiling radar and surface observations of melting level. J. Hydrometeor., 9, 194211, https://doi.org/10.1175/2007JHM853.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maahn, M., and P. Kollias, 2012: Improved Micro Rain Radar snow measurements using Doppler spectra post-processing. Atmos. Meas. Tech., 5, 26612673, https://doi.org/10.5194/amt-5-2661-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massmann, A. K., J. R. Minder, R. D. Garreaud, D. E. Kingsmill, R. A. Valenzuela, A. Montecinos, S. L. Fults, and J. R. Snider, 2017: The Chilean coastal orographic precipitation experiment: Observing the influence of microphysical rain regime on coastal orographic precipitation. J. Hydrometeor., 18, 27232743, https://doi.org/10.1175/JHM-D-17-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • METEK, 2009: MRR physical basics: version 5.2.0.1. METEK Tech. Manual, 20 pp, http://www.mpimet.mpg.de/fileadmin/atmosphaere/barbados/Instrumentation/MRR-physical-basics_20090707.pdf.

  • Minder, J. R., and D. E. Kingsmill, 2013: Mesoscale variations of the atmospheric snow line over the northern Sierra Nevada: Multiyear statistics, case study, and mechanisms. J. Atmos. Sci., 70, 916938, https://doi.org/10.1175/JAS-D-12-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., D. Slayback, and K. Yager, 2014: Characteristics of precipitation features and annual rainfall during the TRMM era in the central Andes. J. Climate, 27, 39824001, https://doi.org/10.1175/JCLI-D-13-00592.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, L. B., A. Seimon, and G. M. Kelly, 2014: Precipitation delivery in the tropical high Andes of southern Peru: New findings and paleoclimatic implications. Int. J. Climatol., 34, 197215, https://doi.org/10.1002/joc.3679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, L. B., and Coauthors, 2017: Characteristics of precipitating storms in glacierized tropical Andean Cordilleras of Peru and Bolivia. Ann. Amer. Assoc. Geogr., 107, 309322, https://doi.org/10.1080/24694452.2016.1260439.

    • Search Google Scholar
    • Export Citation
  • Peters, G., B. Fischer, and T. Andersson, 2002: Rain observations with a vertically looking Micro Rain Radar (MRR). Boreal Environ. Res., 7, 353362.

    • Search Google Scholar
    • Export Citation
  • Peters, G., B. Fischer, H. Münster, M. Clemens, and A. Wagner, 2005: Profiles of raindrop size distributions as retrieved by microrain radars. J. Appl. Meteor., 44, 19301949, https://doi.org/10.1175/JAM2316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabatel, A., and Coauthors, 2013: Current state of glaciers in the tropical Andes: A multi-century perspective on glacier evolution and climate change. Cryosphere, 7, 81102, https://doi.org/10.5194/tc-7-81-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze Jr., 2010: Extreme summer convection in South America. J. Climate, 23, 37613791, https://doi.org/10.1175/2010JCLI3465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze Jr., 2013: Characteristics of precipitating convective systems accounting for the summer rainfall of tropical and subtropical South America. J. Hydrometeor., 14, 2546, https://doi.org/10.1175/JHM-D-12-060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salzmann, N., C. Huggel, M. Rohrer, W. Silverio, B. G. Mark, P. Burns, and C. Portocarrero, 2013: Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes. Cryosphere, 7, 103118, https://doi.org/10.5194/tc-7-103-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schauwecker, S., and Coauthors, 2017: The freezing level in the tropical Andes, Peru: An indicator for present and future glacier extents. J. Geophys. Res. Atmos., 122, 51725189, https://doi.org/10.1002/2016JD025943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuille, M., 1999: Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the Southern Oscillation. Int. J. Climatol., 19, 15791600, https://doi.org/10.1002/(SICI)1097-0088(19991130)19:14<1579::AID-JOC441>3.0.CO;2-N.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagnon, P., P. Ribstein, B. Francou, and J. E. Sicart, 2001: Anomalous heat and mass budget of Glaciar Zongo, Bolivia, during the 1997/98 El Niño year. J. Glaciol., 47, 2128, https://doi.org/10.3189/172756501781832593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos. Sci., 31, 10671078, https://doi.org/10.1175/1520-0469(1974)031<1067:TJORS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., D. J. Gottas, E. T. Strem, F. M. Ralph, and P. J. Neiman, 2002: An automated brightband height detection algorithm for use with Doppler radar spectral moments. J. Atmos. Oceanic Technol., 19, 687697, https://doi.org/10.1175/1520-0426(2002)019<0687:AABHDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolter, K., and M. S. Timlin, 1993: Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proc. 17th Climate Diagnostics Workshop, Norman, OK, NOAA/NMC/CAC/NSSL, 52–57.

  • Yuter, S. E., D. E. Kingsmill, L. B. Nance, and M. Löffler-Mang, 2006: Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteor. Climatol., 45, 14501464, https://doi.org/10.1175/JAM2406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 869 216 15
PDF Downloads 599 141 7