An Analysis of the Prevalence of Heat Waves in the United States between 1948 and 2015

Evan M. Oswald Innovim, LLC, and NOAA Climate Prediction Center, College Park, Maryland

Search for other papers by Evan M. Oswald in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Unusually hot weather is a major concern to public health as well as other systems (e.g., ecological, economical, energy). This study utilized spatially continuous and homogenized observational surface climate data to examine changes in the regularity of heat waves in the continental United States. This included the examination of heat waves according only to daytime temperatures, nighttime temperatures, and both daytime and nighttime temperatures. Results confirmed a strong increase in the prevalence of heat waves between the mid-1970s and the dataset end (2015), and that increase was preceded by a mild decrease since the dataset beginning (1948). Results were unclear whether the prevalence of nighttime or simultaneous daytime–nighttime heat waves increased the most, but it was clear that increases were largest in the summer. The largest gains occurred in the West and Southwest, and a “warming hole” was most conspicuous in the northern Great plains. The changes in heat wave prevalence were similar to changes in the mean temperatures, and more so in the daytime heat waves. Daytime and nighttime heat waves coincided with one another more frequently in recent years than they did in the 1970s. Some parts of the United States (West Coast) were more likely than other parts to experience daytime and nighttime heat waves simultaneously. While linear trends were not sensitive to the climate dataset, trend estimation method, or heat wave definition, they were mildly sensitive to the start and end dates and extremely sensitive to the climate base period method (fixed in time or directly preceding any given heat wave).

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Evan M. Oswald, evan.oswald@noaa.gov

Abstract

Unusually hot weather is a major concern to public health as well as other systems (e.g., ecological, economical, energy). This study utilized spatially continuous and homogenized observational surface climate data to examine changes in the regularity of heat waves in the continental United States. This included the examination of heat waves according only to daytime temperatures, nighttime temperatures, and both daytime and nighttime temperatures. Results confirmed a strong increase in the prevalence of heat waves between the mid-1970s and the dataset end (2015), and that increase was preceded by a mild decrease since the dataset beginning (1948). Results were unclear whether the prevalence of nighttime or simultaneous daytime–nighttime heat waves increased the most, but it was clear that increases were largest in the summer. The largest gains occurred in the West and Southwest, and a “warming hole” was most conspicuous in the northern Great plains. The changes in heat wave prevalence were similar to changes in the mean temperatures, and more so in the daytime heat waves. Daytime and nighttime heat waves coincided with one another more frequently in recent years than they did in the 1970s. Some parts of the United States (West Coast) were more likely than other parts to experience daytime and nighttime heat waves simultaneously. While linear trends were not sensitive to the climate dataset, trend estimation method, or heat wave definition, they were mildly sensitive to the start and end dates and extremely sensitive to the climate base period method (fixed in time or directly preceding any given heat wave).

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Evan M. Oswald, evan.oswald@noaa.gov
Save
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. J., and S. C. Sheridan, 2016: Spatio-temporal changes in heat waves and cold spells: An analysis of 55 U.S. cities. Phys. Geogr., 37, 189209, https://doi.org/10.1080/02723646.2016.1184078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baccini, M., and Coauthors, 2008: Heat effects on mortality in 15 European cities. Epidemiology, 19, 711719, https://doi.org/10.1097/EDE.0b013e318176bfcd.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J., X. Li, and C. Yu, 2015: The construction and validation of the heat vulnerability index, a review. Int. J. Environ. Res. Public Health, 12, 72207234, https://doi.org/10.3390/ijerph120707220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourque, C. P.-A., R. M. Cox, D. J. Allen, P. A. Arp, and F.-R. Meng, 2005: Spatial extent of winter thaw events in eastern North America: Historical weather records in relation to yellow birch decline. Global Change Biol., 11, 14771492, https://doi.org/10.1111/j.1365-2486.2005.00956.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, P. J., and A. T. DeGaetano, 2013: Trends in U.S. surface humidity, 1930–2010. J. Appl. Meteor. Climatol., 52, 147163, https://doi.org/10.1175/JAMC-D-12-035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, S. J., J. Caesar, and C. A. T. Ferro, 2008: Global changes in extreme daily temperature since 1950. J. Geophys. Res., 113, D05115, https://doi.org/10.1029/2006JD008091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bumbaco, K. A., K. D. Dello, and N. A. Bond, 2013: History of Pacific Northwest heat waves: Synoptic pattern and trends. J. Appl. Meteor. Climatol., 52, 16181631, https://doi.org/10.1175/JAMC-D-12-094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and Y. Li, 2017: An inter-comparison of three heat wave types in China during 1961–2010: Observed basic features and linear trends. Sci. Rep., 7, 45619, https://doi.org/10.1038/srep45619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, https://doi.org/10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., and R. J. Allen, 2002: Trends in twentieth-century temperature extremes across the United States. J. Climate, 15, 31883205, https://doi.org/10.1175/1520-0442(2002)015<3188:TITCTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and L. V. Alexander, 2012: The shifting probability distribution of global daytime and night-time temperatures. Geophys. Res. Lett., 39, L14707, https://doi.org/10.1029/2012GL052459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and Coauthors, 2013: Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos., 118, 20982118, https://doi.org/10.1002/jgrd.50150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frich, P., L. V. Alexander, P. Della-Marta, B. Gleason, M. Haylock, A. M. G. Klein Tank, and T. Peterson, 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Res., 19, 193212, https://doi.org/10.3354/cr019193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giersch, J. J., S. Jordan, G. Luikart, L. A. Jones, F. R. Hauer, and C. C. Mulfeld, 2015: Climate-induced range contraction of a rare alpine aquatic invertebrate. Freshwater Sci., 34, 5365, https://doi.org/10.1086/679490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., and Coauthors, 2016: North American extreme temperature events and related large scale meteorologic patterns: A review of statistical methods, dynamics, modeling, and trends. Climate Dyn., 46, 11511184, https://doi.org/10.1007/s00382-015-2638-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, L., P. J. Hanson, W. M. Post, D. P. Kaiser, B. Yang, R. Nemani, S. G. Pallardy, and T. Meyers, 2008: The 2007 eastern US spring freeze: Increased cold damage in a warming world? Bioscience, 58, 253262, https://doi.org/10.1641/B580311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habeeb, D., J. Vargo, and B. Stone Jr., 2015: Rising heat wave trends in large US cities. Nat. Hazards, 76, 16511665, https://doi.org/10.1007/s11069-014-1563-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 2012: Perception of climate change. Proc. Natl. Acad. Sci. USA, 109, E2415E2423, https://doi.org/10.1073/pnas.1205276109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howden, S. M., and J. Turnpenny, 1997: Modelling heat stress and water loss of beef cattle in subtropical Queensland under current climates and climate change. Modsim 97, Canberra, Australia, Modelling and Simulation Society of Australia, 1103–1108.

  • Huang, J., H. M. van den Dool, and A. G. Barnston, 1996: Long-lead seasonal temperature prediction using optimal climate normals. J. Climate, 9, 809817, https://doi.org/10.1175/1520-0442(1996)009<0809:LLSTPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaac, M., and D. P. van Vuuren, 2009: Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy, 37, 507521, https://doi.org/10.1016/j.enpol.2008.09.051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalkstein, L. S., and R. E. Davis, 1989: Weather and human mortality: An evaluation of demographic and interregional responses in the United States. Ann. Assoc. Amer. Geogr., 79, 4464, https://doi.org/10.1111/j.1467-8306.1989.tb00249.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kampf, S. K., and M. A. Lefsky, 2016: Transition of dominant peak flow source from snowmelt to rainfall along the Colorado Front Range: Historical patterns, trends, and lessons from the 2013 Colorado Front Range floods. Water Resour. Res., 52, 407422, https://doi.org/10.1002/2015WR017784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. Griffin, 160 pp.

  • Knappenberger, P. C., P. J. Michaels, and R. E. Davis, 2001: Nature of observed temperature changes across the United States during the 20th century. Climate Res., 17, 4553, https://doi.org/10.3354/cr017045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knowlton, K., M. Rotkin-Ellman, G. King, H. G. Margolis, D. Smith, G. Solomon, R. Trent, and P. English, 2009: The 2006 California heat wave: Impacts on hospitalizations and emergency department visits. Environ. Health Perspect., 117, 6167, https://doi.org/10.1289/ehp.11594.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., E. A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K. M. Andreadis, E. P. Maurer, and D. P. Lettenmaier, 2013: A long-term hydrological based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, https://doi.org/10.1175/JCLI-D-12-00508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lowe, D., K. L. Ebi, and B. Forsbeg, 2011: Heat wave early warning systems and adaptation advice to reduce human health consequences of heat waves. Int. J. Environ. Public Health, 8, 46234648, https://doi.org/10.3390/ijerph8124623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mader, T. L., 2003: Environmental stress in confined beef cattle. J. Anim. Sci., 81 (Suppl.), E110E119, https://doi.org/10.2527/2003.8114_suppl_2E110x.

    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • McGregor, G. R., M. Felling, T. Wolf, and S. Gosling, 2007: The social impact of heat waves. Environmental Agency Rep., 40 pp.

  • McKinnon, K. A., A. Rhines, M. P. Tingley, and P. Huybers, 2016: The changing shape of Northern Hemisphere summer temperature distributions. J. Geophys. Res. Atmos., 121, 88498868, https://doi.org/10.1002/2016JD025292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Tebaldi, G. Walton, D. Easterling, and L. McDaniel, 2009: Relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S. Geophys. Res. Lett., 36, L23701, https://doi.org/10.1029/2009GL040736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, and G. Branstator, 2012: Mechanisms contributing to the warming hole and the consequent U.S. east–west differential of heat extremes. J. Climate, 25, 63946408, https://doi.org/10.1175/JCLI-D-11-00655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and C. N. Williams Jr., 2009: Homogenization of temperature series via pairwise comparisons. J. Climate, 22, 17001717, https://doi.org/10.1175/2008JCLI2263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., C. N. Williams Jr., and R. S. Vose, 2009: The United States Historical Climatology Network monthly temperature data, version 2. Bull. Amer. Meteor. Soc., 90, 9931008, https://doi.org/10.1175/2008BAMS2613.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oswald, E. M., and R. B. Rood, 2014: A trend analysis of the 1930–2010 extreme heat events in the continental United States. J. Appl. Meteor. Climatol., 53, 565582, https://doi.org/10.1175/JAMC-D-13-071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oyler, J. W., A. Ballantyne, K. Jencso, M. Sweet, and S. W. Running, 2015a: Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature. Int. J. Climatol., 35, 22582279, https://doi.org/10.1002/joc.4127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oyler, J. W., S. Z. Dobrowski, A. Ballantyne, A. E. Klene, and S. W. Running, 2015b: Artificial amplification of warming trends across the mountains of the western United States. Geophys. Res. Lett., 42, 153161, https://doi.org/10.1002/2014GL062803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oyler, J. W., S. Z. Dobrowski, Z. A. Holden, and S. W. Running, 2016: Remotely sensed land skin temperature as a spatial predictor of air temperature across the conterminous United States. J. Appl. Meteor. Climatol., 55, 14411457, https://doi.org/10.1175/JAMC-D-15-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, Z., R. W. Arritt, E. S. Takle, W. J. Gutowski Jr., C. J. Anderson, and M. Segal, 2004: Altered hydrologic feedback in a warming climate introduces a “warming hole.” Geophys. Res. Lett., 31, L17109, https://doi.org/10.1029/2004GL020528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., 2015: A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmos. Res., 164–165, 242267, https://doi.org/10.1016/j.atmosres.2015.05.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., and Coauthors, 2013: Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: State of knowledge. Bull. Amer. Meteor. Soc., 94, 821834, https://doi.org/10.1175/BAMS-D-12-00066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Portmann, R. W., S. Solomon, and G. C. Hegerl, 2009: Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States. Proc. Natl. Acad. Sci. USA, 106, https://doi.org/10.1073/pnas.0808533106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poumadère, M., C. Mays, S. Le Mer, and R. Blong, 2005: The 2003 heat wave in France: Dangerous climate here and now. Risk Anal., 25, 14831494, https://doi.org/10.1111/j.1539-6924.2005.00694.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PRISM Climate Group, 2016: Descriptions of PRISM spatial climate datasets for the conterminous United States. Oregon State University Tech. Doc., 22 pp., http://www.prism.oregonstate.edu/documents/PRISM_datasets.pdf .

  • Reeves, M. C., and K. E. Bagne, 2016: Vulnerability of cattle production to climate change on U.S. rangelands. USDA Forest Service General Tech. Rep. RMRS-GTR-343, 39 pp., https://www.fs.usda.gov/treesearch/pubs/50907.

  • Robinson, W. A., R. Reudy, and J. E. Hansen, 2002: General circulation model simulations of recent cooling in the east-central United States. J. Geophys. Res., 107, 4748, https://doi.org/10.1029/2001JD001577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rohde, R., and Coauthors, 2013a: A new estimate of the average earth surface land temperature spanning 1975 to 2011. Geoinf. Geostat. Overview, 1, 1000101, https://doi.org/10.4172/2327-4581.1000101.

    • Search Google Scholar
    • Export Citation
  • Rohde, R., and Coauthors, 2013b: Berkeley Earth temperature averaging process. Geoinf. Geostat. Overview, 1, 1000103, https://doi.org/10.4172/2327-4581.1000103.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., M. G. Donat, B. Mueller, and L. V. Alexander, 2014: No pause in the increase of hot temperature extremes. Nat. Climate Change, 4, 161163, https://doi.org/10.1038/nclimate2145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sepulveda, A. J., and Coauthors, 2015: The shifting climate portfolio of the greater Yellowstone area. PLOS ONE, 10, e0145060, https://doi.org/10.1371/journal.pone.0145060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaposhnikov, D., and Coauthors, 2014: Mortality related to air pollution with the Moscow heat wave and wildfire of 2010. Epidemiology, 25, 359364, https://doi.org/10.1097/EDE.0000000000000090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, S. C., and P. G. Dixon, 2017: Spatiotemporal trends in human vulnerability and adaptation to heat across the United States. Anthropocene, 20, 6173, https://doi.org/10.1016/j.ancene.2016.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, M. D., 2011: An ecological perspective on extreme climatic events: A synthetic definition and framework to guide future research. J. Ecol., 99, 656663, https://doi.org/10.1111/j.1365-2745.2011.01798.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. T., B. F. Zaitchik, and J. M. Gohlke, 2013: Heat waves in the United States: Definitions, patterns and trends. Climatic Change, 118, 811825, https://doi.org/10.1007/s10584-012-0659-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., S. W. Running, and M. A. White, 1997: Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol., 190, 214251, https://doi.org/10.1016/S0022-1694(96)03128-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., M. M. Thornton, B. W. Mayer, Y. Wei, R. Davarakonda, R. S. Vose, and R. B. Cook, 2017: Daymet: Daily surface weather grid for North America, version 3. ORNL DAAC, accessed 14 June 2017, https://doi.org/10.3334/ORNLDAAC/1328.

    • Crossref
    • Export Citation
  • Toloo, G., G. FitzGerald, P. Aitken, K. Verrall, and S. Tong, 2013: Are heat warning systems effective? Environ. Health, 12, 27, https://doi.org/10.1186/1476-069X-12-27.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., S. Schubert, M. Suarez, J. Chen, M. Hoerling, A. Kumar, and P. Pegion, 2009: Attribution of the seasonality and regionality in climate trends over the United States during 1950–2000. J. Climate, 22, 25712590, https://doi.org/10.1175/2008JCLI2359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitman, S., G. Good, E. R. Donoghue, N. Benbow, W. Shou, and S. Mou, 1997: Mortality in Chicago attributed to the July 1995 heat wave. Amer. J. Public Health, 87, 15151518, https://doi.org/10.2105/AJPH.87.9.1515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., H. Lin, J. Li, Z. Jiang, and T. Ma, 2012: Heat wave frequency variability over North America: Two distinct leading modes. J. Geophys. Res., 117, D02102, https://doi.org/10.1029/2011JD016908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zachariassen, J., K. Zeller, N. Nikolov, and T. McClelland, 2003: A review of the Forest Service remote automated weather station (RAWS) network. USDA Forest Service, General Tech. Rep. RMRS-GTR-119, 153 pp., https://www.fs.usda.gov/treesearch/pubs/6118.

    • Crossref
    • Export Citation
  • Zhang, K., R. B. Rood, G. Michailidis, E. M. Oswald, J. D. Schwartz, A. Zanobetti, K. L. Ebi, and M. S. O’Neill, 2012: Comparing exposure metrics for classifying ‘dangerous heat’ in heat wave and health warning systems. Environ. Int., 46, 2329, https://doi.org/10.1016/j.envint.2012.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., G. Hegerl, F. W. Zwiers, and J. Kenyon, 2005: Avoiding inhomogeneity in percentile-based indices of temperature extremes. J. Climate, 18, 16411651, https://doi.org/10.1175/JCLI3366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 956 353 19
PDF Downloads 760 183 11