NU-WRF Aerosol Transport Simulation over West Africa: Effects of Biomass Burning on Smoke Aerosol Distribution

Takamichi Iguchi Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Takamichi Iguchi in
Current site
Google Scholar
PubMed
Close
,
Toshihisa Matsui Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Toshihisa Matsui in
Current site
Google Scholar
PubMed
Close
,
Zhining Tao Universities Space Research Association, Columbia, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Zhining Tao in
Current site
Google Scholar
PubMed
Close
,
Dongchul Kim Universities Space Research Association, Columbia, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Dongchul Kim in
Current site
Google Scholar
PubMed
Close
,
Charles M. Ichoku NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Charles M. Ichoku in
Current site
Google Scholar
PubMed
Close
,
Luke Ellison Science Systems and Applications, Inc., Lanham, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Luke Ellison in
Current site
Google Scholar
PubMed
Close
, and
Jun Wang Department of Chemical and Biochemical Engineering, Center for Global and Regional Environmental Studies, The University of Iowa, Iowa City, Iowa

Search for other papers by Jun Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Series of aerosol transport hindcasts for West Africa were conducted using the Weather Research and Forecasting (WRF) Model coupled to chemistry within the NASA-Unified WRF (NU-WRF) framework. The transport of biomass-burning aerosols in April and December 2009 was investigated over two types of simulation domains. One-month simulations with 9-km grid spacing for April or December 2009 covered most of North and West Africa and were evaluated by comparison with measurements of the total-column aerosol optical depth, Ångström exponent, and horizontal wind components at various pressure levels. The horizontal wind components at 700 hPa were identified as key factors in determining the transport patterns of biomass-burning aerosols from sub-Saharan West Africa to the Sahel. The vertical accumulation of biomass-burning aerosols close to 700 hPa was demonstrated in 1-day simulations with 1-km horizontal grid spacing. A new simple parameterization for the effects of heat release by biomass burning was designed for this resolution and tested together with the conventional parameterization based on fixed smoke injection heights. The aerosol vertical profiles were somewhat sensitive to the selection of parameterization, except for cases with the assumption of excessive heating by biomass burning. The new parameterization works reasonably well and offers flexibility to relate smoke transport to biomass-burning plume rise that can be correlated with the satellite fire radiative power measurements, which is advantageous relative to the conventional parameterization.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Takamichi Iguchi, takamichi.iguchi@nasa.gov

Abstract

Series of aerosol transport hindcasts for West Africa were conducted using the Weather Research and Forecasting (WRF) Model coupled to chemistry within the NASA-Unified WRF (NU-WRF) framework. The transport of biomass-burning aerosols in April and December 2009 was investigated over two types of simulation domains. One-month simulations with 9-km grid spacing for April or December 2009 covered most of North and West Africa and were evaluated by comparison with measurements of the total-column aerosol optical depth, Ångström exponent, and horizontal wind components at various pressure levels. The horizontal wind components at 700 hPa were identified as key factors in determining the transport patterns of biomass-burning aerosols from sub-Saharan West Africa to the Sahel. The vertical accumulation of biomass-burning aerosols close to 700 hPa was demonstrated in 1-day simulations with 1-km horizontal grid spacing. A new simple parameterization for the effects of heat release by biomass burning was designed for this resolution and tested together with the conventional parameterization based on fixed smoke injection heights. The aerosol vertical profiles were somewhat sensitive to the selection of parameterization, except for cases with the assumption of excessive heating by biomass burning. The new parameterization works reasonably well and offers flexibility to relate smoke transport to biomass-burning plume rise that can be correlated with the satellite fire radiative power measurements, which is advantageous relative to the conventional parameterization.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Takamichi Iguchi, takamichi.iguchi@nasa.gov
Save
  • Abel, S. J., E. J. Highwood, J. M. Haywood, and M. A. Stringer, 2005: The direct radiative effect of biomass burning aerosols over southern Africa. Atmos. Chem. Phys., 5, 19992018, https://doi.org/10.5194/acp-5-1999-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, G., C. Thorncroft, and T. Hewson, 2007: African easterly waves during 2004—Analysis using objective techniques. Mon. Wea. Rev., 135, 12511267, https://doi.org/10.1175/MWR3343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Coauthors, 2015: MERRA-2: Initial evaluation of the climate. NASA Tech. Memo. NASA/TM-2015-104606/Vol. 43, 145 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.

  • Buchard, V., and Coauthors, 2015: Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA aerosol reanalysis. Atmos. Chem. Phys., 15, 57435760, https://doi.org/10.5194/acp-15-5743-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CALIPSO Science Team, 2015: CALIPSO/CALIOP lidar aerosol profile data, version 4.10. NASA Atmospheric Science Data Center, accessed 13 May 2016, https://doi.org/10.5067/caliop/calipso/lid_l2_05kmapro-standard-v4-10.

    • Crossref
    • Export Citation
  • Cautenet, S., and Coauthors, 1999: Simulation of carbon monoxide redistribution over central Africa during biomass burning events (experiment for regional sources and sinks of oxidants (EXPRESSO)). J. Geophys. Res., 104, 30 64130 657, https://doi.org/10.1029/1999JD900393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chin, M., R. B. Rood, S.-J. Lin, J.-F. Müller, and A. M. Thompson, 2000a: Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. J. Geophys. Res., 105, 24 67124 687, https://doi.org/10.1029/2000JD900384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chin, M., and Coauthors, 2000b: Atmospheric sulfur cycle simulated in the global model GOCART: Comparison with field observations and regional budgets. J. Geophys. Res., 105, 24 68924 712, https://doi.org/10.1029/2000JD900385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. Tech. Memo. NASA/TM-1999-104606, Vol. 15, 38 pp., http://gmao.gsfc.nasa.gov/pubs/docs/Chou136.pdf.

  • Chou, M.-D., M. J. Suarez, X.-Z. Liang, and M. M.-H. Yan, 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA/TM-2001-104606, Vol. 19, 54 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010072848.pdf.

  • Coen, J. L., M. Cameron, J. Michalakes, E. G. Patton, P. J. Riggan, and K. M. Yedinak, 2013: WRF-Fire: Coupled weather–wildland fire modeling with the Weather Research and Forecasting Model. J. Appl. Meteor. Climatol., 52, 1638, https://doi.org/10.1175/JAMC-D-12-023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colarco, P. R., M. R. Schoeberl, B. G. Doddridge, L. T. Marufu, O. Torres, and E. J. Welton, 2004: Transport of smoke from Canadian forest fires to the surface near Washington, D.C.: Injection height, entrainment, and optical properties. J. Geophys. Res., 109, D06203, https://doi.org/10.1029/2003JD004248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delmas, R. A., P. Loudjani, A. Podaire, and J.-C. Menaut, 1991: Biomass burning in Africa: An assessment of annually burned biomass. Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, J. S. Levine, Ed., MIT Press, 126–132.

  • Durre, I., and X. Yin, 2008: Enhanced radiosonde data for studies of vertical structure [in “Nowcast”]. Bull. Amer. Meteor. Soc., 89 (9), 12571260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freitas, S. R., and Coauthors, 2007: Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models. Atmos. Chem. Phys., 7, 33853398, https://doi.org/10.5194/acp-7-3385-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freitas, S. R., and Coauthors, 2011: PREP-CHEM-SRC–1.0: A preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models. Geosci. Model Dev., 4, 419433, https://doi.org/10.5194/gmd-4-419-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gatebe, C. K., C. Ichoku, R. Poudyal, M. O. Román, and E. Wilcox, 2014: Surface albedo darkening from wildfires in northern sub-Saharan Africa. Environ. Res. Lett., 9, 065003, https://doi.org/10.1088/1748-9326/9/6/065003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, C., J. Wang, J. S. Reid, D. Posselt, P. Xian, and E. Hyer, 2017: Mesoscale modeling of smoke transport from equatorial Southeast Asian Maritime Continent to the Philippines: First comparison of ensemble analysis with in situ observations. J. Geophys. Res. Atmos., 122, 53805398, https://doi.org/10.1002/2016JD026241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giglio, L., 2013: MODIS collection 5 active fire product user’s guide, version 2.5. Dept. of Geography, University of Maryland, College Park, 61 pp., https://cdn.earthdata.nasa.gov/conduit/upload/907/MODIS_Fire_Users_Guide_2.5.pdf.

  • Giglio, L., W. Schroeder, and C. O. Justice, 2016: The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ., 178, 3141, https://doi.org/10.1016/j.rse.2016.02.054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ginoux, P., M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin, 2001: Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res., 106, 20 25520 273, https://doi.org/10.1029/2000JD000053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, https://doi.org/10.1029/2002GL015311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys., 6, 31813210, https://doi.org/10.5194/acp-6-3181-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holben, B., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116, https://doi.org/10.1016/S0034-4257(98)00031-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, N. C., R. Gautam, A. M. Sayer, C. Bettenhausen, C. Li, M. J. Jeong, S.-C. Tsay, and B. Holben, 2012: Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmos. Chem. Phys., 12, 80378053, https://doi.org/10.5194/acp-12-8037-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, N. C., A. M. Sayer, M.-J. Jeong, and C. Bettenhausen, 2013: SeaWiFS deep blue aerosol optical depth and angstrom exponent monthly level 3 data gridded at 0.5 degrees V004. Goddard Earth Sciences Data and Information Services Center, accessed 7 July 2017, https://doi.org/10.5067/MEASURES/SWDB/DATA303.

    • Crossref
    • Export Citation
  • Ichoku, C., and Y. J. Kaufman, 2005: A method to derive smoke emission rates from MODIS fire radiative energy measurements. IEEE Trans. Geosci. Remote Sens., 43, 26362649, https://doi.org/10.1109/TGRS.2005.857328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ichoku, C., and L. Ellison, 2014: Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements. Atmos. Chem. Phys., 14, 66436667, https://doi.org/10.5194/acp-14-6643-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ichoku, C., L. Giglio, M. J. Wooster, and L. A. Remer, 2008: Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sens. Environ., 112, 29502962, https://doi.org/10.1016/j.rse.2008.02.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ichoku, C., and Coauthors, 2016: Biomass burning, land-cover change, and the hydrological cycle in northern sub-Saharan Africa. Environ. Res. Lett., 11, 095005, https://doi.org/10.1088/1748-9326/11/9/095005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, B. T., B. Heese, S. A. McFarlane, P. Chazette, A. Jones, and N. Bellouin, 2008: Vertical distribution and radiative effects of mineral dust and biomass burning aerosol over West Africa during DABEX. J. Geophys. Res., 113, D00C12, https://doi.org/10.1029/2008JD009848.

    • Search Google Scholar
    • Export Citation
  • Kim, D., M. Chin, E. M. Kemp, Z. Tao, C. D. Peters-Lidard, and P. Ginoux, 2017: Development of high-resolution dynamic dust source function—A case study with a strong dust storm in a regional model. Atmos. Environ., 159, 1125, https://doi.org/10.1016/j.atmosenv.2017.03.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamarque, J. F., and Coauthors, 2013: The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and description of models, simulations and climate diagnostics. Geosci. Model Dev., 6, 179206, https://doi.org/10.5194/gmd-6-179-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, S., W.-K. Tao, J. Simpson, R. Cifelli, S. Rutledge, W. Olson, and J. Halverson, 2007: Improving simulations of convective systems from TRMM LBA: Easterly and westerly regimes. J. Atmos. Sci., 64, 11411164, https://doi.org/10.1175/JAS3879.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M. W., K.-M. Kim, J.-J. Shi, T. Matsui, M. Chin, Q. Tan, C. Peters-Lidard, and W. K. Tao, 2017: Impacts of aerosol-monsoon interaction on rainfall and circulation over northern India and the Himalayan foothills. Climate Dyn., 49, 19451960, https://doi.org/10.1007/s00382-016-3430-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levy, R., and Coauthors, 2015: MODIS atmosphere L2 aerosol product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center, accessed 1 March 2018, https://doi.org/10.5067/MODIS/MOD04_L2.006.

    • Crossref
    • Export Citation
  • Liousse, C., and Coauthors, 2010: Updated African biomass burning emission inventories in the framework of the AMMA-IDAF program, with an evaluation of combustion aerosols. Atmos. Chem. Phys., 10, 96319646, https://doi.org/10.5194/acp-10-9631-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luderer, G., J. Trentmann, T. Winterrath, C. Textor, M. Herzog, H. F. Graf, and M. O. Andreae, 2006: Modeling of biomass smoke injection into the lower stratosphere by a large forest fire (Part II): Sensitivity studies. Atmos. Chem. Phys., 6, 52615277, https://doi.org/10.5194/acp-6-5261-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mandel, J., J. D. Beezley, and A. K. Kochanski, 2011: Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011. Geosci. Model Dev., 4, 591610, https://doi.org/10.5194/gmd-4-591-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104, https://doi.org/10.1029/2003JD004495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milton, S. F., G. Greed, M. E. Brooks, J. Haywood, B. Johnson, R. P. Allan, A. Slingo, and W. M. F. Grey, 2008: Modeled and observed atmospheric radiation balance during the West African dry season: Role of mineral dust, biomass burning aerosol, and surface albedo. J. Geophys. Res., 113, D00C02, https://doi.org/10.1029/2007JD009741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MISR Science Team, 2015: Terra/MISR level 3, component global aerosol monthly NetCDF, version 4. NASA Atmospheric Science Data Center, accessed 2 March 2018, https://doi.org/10.5067/Terra/MISR/MIL3MAEN_L3.004.

    • Crossref
    • Export Citation
  • Myhre, G., C. R. Hoyle, T. F. Berglen, B. T. Johnson, and J. M. Haywood, 2008: Modeling of the solar radiative impact of biomass burning aerosols during the Dust and Biomass-burning Experiment (DABEX). J. Geophys. Res., 113, D00C16, https://doi.org/10.1029/2008JD009857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level 3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA/NCEP, 2000: NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999 (updated daily). National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, accessed 29 June 2017, https://doi.org/10.5065/D6M043C6.

    • Crossref
    • Export Citation
  • Nishihama, M., R. Wolfe, D. Solomon, F. Patt, J. Blanchette, A. Fleig, and E. Masuoka, 1997: MODIS level 1A Earth location: Algorithm theoretical basis document, version 3.0. MODIS Science Data Support Team Rep., SDST-092, 147 pp.

  • Omar, A. H., and Coauthors, 2009: The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Oceanic Technol., 26, 19942014, https://doi.org/10.1175/2009JTECHA1231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and Coauthors, 2015: Integrated modeling of aerosol, cloud, precipitation and land processes at satellite-resolved scales. Environ. Modell. Software, 67, 149159, https://doi.org/10.1016/j.envsoft.2015.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, D., J. Wang, C. Ichoku, E. Hyer, and V. Ambrosia, 2013: A sub-pixel-based calculation of fire radiative power from MODIS observations: 1: Algorithm development and validation. Remote Sens. Environ., 129, 262279, https://doi.org/10.1016/j.rse.2012.10.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, D., E. Hyer, and J. Wang, 2014: Quantifying the potential for high-altitude smoke injection in the North American boreal forest using the standard MODIS fire products and subpixel-based methods. J. Geophys. Res. Atmos., 119, 34013419, https://doi.org/10.1002/2013JD021067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polivka, T. N., J. Wang, L. T. Ellison, E. J. Hyer, and C. Ichoku, 2016: Improving nocturnal fire detection with the VIIRS day–night band. IEEE Trans. Geosci. Remote Sens., 54, 55035519, https://doi.org/10.1109/TGRS.2016.2566665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeves, C. E., and Coauthors, 2010: Chemical and aerosol characterisation of the troposphere over West Africa during the monsoon period as part of AMMA. Atmos. Chem. Phys., 10, 75757601, https://doi.org/10.5194/acp-10-7575-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, G., M. J. Wooster, and E. Lagoudakis, 2009: Annual and diurnal African biomass burning temporal dynamics. Biogeosciences, 6, 849866, https://doi.org/10.5194/bg-6-849-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, G., and Coauthors, 2015: LSA SAF Meteosat FRP products—Part 2: Evaluation and demonstration of use in the Copernicus Atmosphere Monitoring Service (CAMS). Atmos. Chem. Phys., 15, 13 24113 267, https://doi.org/10.5194/acp-15-13241-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., R. Wood, and P. J. Rasch, 2011: Direct and semidirect aerosol effects of southern African biomass burning aerosol. J. Geophys. Res., 116, D12205, https://doi.org/10.1029/2010JD015540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sayer, A. M., L. A. Munchak, N. C. Hsu, R. C. Levy, C. Bettenhausen, and M.-J. Jeong, 2014: MODIS collection 6 aerosol products: Comparison between Aqua’s e‐Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos., 119, 13 96513 989, https://doi.org/10.1002/2014JD022453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J. J., and Coauthors, 2014: Implementation of an aerosol–cloud–microphysics–radiation coupling into the NASA unified WRF: Simulation results for the 6–7 August 2006 AMMA special observing period. Quart. J. Roy. Meteor. Soc., 140, 21582175, https://doi.org/10.1002/qj.2286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://dx.doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Solomos, S., and Coauthors, 2015: Smoke dispersion modeling over complex terrain using high resolution meteorological data and satellite observations—The FireHub platform. Atmos. Environ., 119, 348361, https://doi.org/10.1016/j.atmosenv.2015.08.066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swap, R. J., and Coauthors, 2002: The Southern African Regional Science Initiative (SAFARI 2000): Overview of the dry season field campaign. S. Afr. J. Sci., 98, 125130.

    • Search Google Scholar
    • Export Citation
  • Tao, Z., H. Yu, and M. Chin, 2015: The role of aerosol-cloud-radiation interactions in regional air quality—A NU-WRF study over the United States. Atmosphere, 6, 10451068, https://doi.org/10.3390/atmos6081045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, Z., H. Yu, and M. Chin, 2016: Impact of transpacific aerosol on air quality over the United States: A perspective from aerosol-cloud-radiation interactions. Atmos. Environ., 125, 4860, https://doi.org/10.1016/j.atmosenv.2015.10.083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified Noah land surface model in the WRF model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2A, https://ams.confex.com/ams/pdfpapers/69061.pdf.

  • Trentmann, J., and Coauthors, 2006: Modeling of biomass smoke injection into the lower stratosphere by a large forest fire (Part I): Reference simulation. Atmos. Chem. Phys., 6, 52475260, https://doi.org/10.5194/acp-6-5247-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tummon, F., F. Solmon, C. Liousse, and M. Tadross, 2010: Simulation of the direct and semidirect aerosol effects on the southern Africa regional climate during the biomass burning season. J. Geophys. Res., 115, D19206, https://doi.org/10.1029/2009JD013738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van der Werf, G. R., and Coauthors, 2010: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys., 10, 11 70711 735, https://doi.org/10.5194/acp-10-11707-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., S. A. Christopher, U. S. Nair, J. S. Reid, E. M. Prins, J. Szykman, and J. L. Hand, 2006: Mesoscale modeling of Central American smoke transport to the United States: 1. “Top‐down” assessment of emission strength and diurnal variation impacts. J. Geophys. Res., 111, D05S17, https://doi.org/10.1029/2005JD006416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., Y. Yue, Y. Wang, C. Ichoku, L. Ellison, and J. Zeng, 2018: Mitigating satellite-based fire sampling limitations in deriving biomass burning emission rates: Application to WRF-Chem model over the northern sub-Saharan African region. J. Geophys. Res. Atmos., 123, 507528, https://doi.org/10.1002/2017JD026840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, https://doi.org/10.1175/2009JTECHA1281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wooster, M. J., G. Roberts, G. L. W. Perry, and Y. J. Kaufman, 2005: Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res., 110, D24311, https://doi.org/10.1029/2005JD006318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wooster, M. J., and Coauthors, 2015: LSA SAF Meteosat FRP products—Part 1: Algorithms, product contents, and analysis. Atmos. Chem. Phys., 15, 13 21713 239, https://doi.org/10.5194/acp-15-13217-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z., J. Wang, C. Ichoku, E. Hyer, and J. Zeng, 2013: Mesoscale modeling and satellite observation of transport and mixing of smoke and dust particles over northern sub‐Saharan African region. J. Geophys. Res. Atmos., 118, 12 13912 157, https://doi.org/10.1002/2013JD020644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and Coauthors, 2014: Sensitivity of mesoscale modeling of smoke direct radiative effect to the emission inventory: A case study in northern sub-Saharan African region. Environ. Res. Lett., 9, 075002, https://doi.org/10.1088/1748-9326/9/7/075002.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 439 147 16
PDF Downloads 364 82 7