A Method for Identifying Midlatitude Mesoscale Convective Systems in Radar Mosaics. Part I: Segmentation and Classification

Alex M. Haberlie Department of Geographic and Atmospheric Sciences, Northern Illinois University, DeKalb, Illinois

Search for other papers by Alex M. Haberlie in
Current site
Google Scholar
PubMed
Close
and
Walker S. Ashley Department of Geographic and Atmospheric Sciences, Northern Illinois University, DeKalb, Illinois

Search for other papers by Walker S. Ashley in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This research evaluates the ability of image-processing and select machine-learning algorithms to identify midlatitude mesoscale convective systems (MCSs) in radar-reflectivity images for the conterminous United States. The process used in this study is composed of two parts: segmentation and classification. Segmentation is performed by identifying contiguous or semicontiguous regions of deep, moist convection that are organized on a horizontal scale of at least 100 km. The second part, classification, is performed by first compiling a database of thousands of precipitation clusters and then subjectively assigning each sample one of the following labels: 1) midlatitude MCS, 2) unorganized convective cluster, 3) tropical system, 4) synoptic system, or 5) ground clutter and/or noise. The attributes of each sample, along with their assigned label, are used to train three machine-learning algorithms: random forest, gradient boosting, and “XGBoost.” Results using a testing dataset suggest that the algorithms can distinguish between MCS and non-MCS samples with a high probability of detection and low probability of false detection. Further, the trained algorithm predictions are well calibrated, allowing reliable probabilistic classification. The utility of this two-step procedure is illustrated by generating spatial frequency maps of automatically identified precipitation clusters that are stratified by using various reflectivity and probabilistic prediction thresholds. These results suggest that machine learning can add value by limiting the amount of false-positive (non-MCS) samples that are not removed by segmentation alone.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Current affiiliation: Department of Geography and Anthropology, Louisiana State University, Baton Rouge, Louisiana.

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAMC-D-17-0294.1

Corresponding author: Alex M. Haberlie, ahaberlie1@lsu.edu

Abstract

This research evaluates the ability of image-processing and select machine-learning algorithms to identify midlatitude mesoscale convective systems (MCSs) in radar-reflectivity images for the conterminous United States. The process used in this study is composed of two parts: segmentation and classification. Segmentation is performed by identifying contiguous or semicontiguous regions of deep, moist convection that are organized on a horizontal scale of at least 100 km. The second part, classification, is performed by first compiling a database of thousands of precipitation clusters and then subjectively assigning each sample one of the following labels: 1) midlatitude MCS, 2) unorganized convective cluster, 3) tropical system, 4) synoptic system, or 5) ground clutter and/or noise. The attributes of each sample, along with their assigned label, are used to train three machine-learning algorithms: random forest, gradient boosting, and “XGBoost.” Results using a testing dataset suggest that the algorithms can distinguish between MCS and non-MCS samples with a high probability of detection and low probability of false detection. Further, the trained algorithm predictions are well calibrated, allowing reliable probabilistic classification. The utility of this two-step procedure is illustrated by generating spatial frequency maps of automatically identified precipitation clusters that are stratified by using various reflectivity and probabilistic prediction thresholds. These results suggest that machine learning can add value by limiting the amount of false-positive (non-MCS) samples that are not removed by segmentation alone.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Current affiiliation: Department of Geography and Anthropology, Louisiana State University, Baton Rouge, Louisiana.

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAMC-D-17-0294.1

Corresponding author: Alex M. Haberlie, ahaberlie1@lsu.edu
Save
  • Ahijevych, D., J. O. Pinto, J. K. Williams, and M. Steiner, 2016: Probabilistic forecasts of mesoscale convective system initiation using the random forest data mining technique. Wea. Forecasting, 31, 581599, https://doi.org/10.1175/WAF-D-15-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, C. J., and R. W. Arritt, 1998: Mesoscale convective complexes and persistent elongated convective systems over the United States during 1992 and 1993. Mon. Wea. Rev., 126, 578599, https://doi.org/10.1175/1520-0493(1998)126<0578:MCCAPE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, S. T., and W. S. Ashley, 2008: Flood fatalities in the United States. J. Appl. Meteor. Climatol., 47, 805818, https://doi.org/10.1175/2007JAMC1611.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., and T. L. Mote, 2005: Derecho hazards in the United States. Bull. Amer. Meteor. Soc., 86, 15771592, https://doi.org/10.1175/BAMS-86-11-1577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., T. L. Mote, P. G. Dixon, S. L. Trotter, E. J. Powell, J. D. Durkee, and A. J. Grundstein, 2003: Distribution of mesoscale convective complex rainfall in the United States. Mon. Wea. Rev., 131, 30033017, https://doi.org/10.1175/1520-0493(2003)131<3003:DOMCCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., M. L. Bentley, and J. A. Stallins, 2012: Urban-induced thunderstorm modification in the southeast United States. Climatic Change, 113, 481498, https://doi.org/10.1007/s10584-011-0324-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E., J. S. Kain, and S. Lakshmivarahan, 2005: Development of an automated classification procedure for rainfall systems. Mon. Wea. Rev., 133, 844862, https://doi.org/10.1175/MWR2892.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 17111732, https://doi.org/10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breiman, L., 2001: Random forests. Mach. Learn., 45, 532, https://doi.org/10.1023/A:1010933404324.

  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 13, https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and D. J. Stensrud, 2000: Climatology of heavy rain events in the United States from hourly precipitation observations. Mon. Wea. Rev., 128, 11941201, https://doi.org/10.1175/1520-0493(2000)128<1194:COHREI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham Jr., 1948: Thunderstorm structure and circulation. J. Atmos. Sci., 5, 7186, https://doi.org/10.1175/1520-0469(1948)005<0071:TSAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., and J. D. Tuttle, 2008: Rainfall occurrence in the U.S. warm season: The diurnal cycle. J. Climate, 21, 41324146, https://doi.org/10.1175/2008JCLI2275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, W., M. L. Stein, J. Wang, V. R. Kotamarthi, and E. J. Moyer, 2016: Changes in spatiotemporal precipitation patterns in changing climate conditions. J. Climate, 29, 83558376, https://doi.org/10.1175/JCLI-D-15-0844.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T., and C. Guestrin, 2016: XGBoost: A scalable tree boosting system. Proc. 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, San Francisco, CA, Association for Computing Machinery, 785–794, https://dl.acm.org/citation.cfm?id=2939785.

    • Crossref
    • Export Citation
  • Clark, A. J., R. G. Bullock, T. L. Jensen, M. Xue, and F. Kong, 2014: Application of object-based time-domain diagnostics for tracking precipitation systems in convection-allowing models. Wea. Forecasting, 29, 517542, https://doi.org/10.1175/WAF-D-13-00098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., M. C. Coniglio, S. F. Corfidi, and S. J. Corfidi, 2007: Discrimination of mesoscale convective system environments using sounding observations. Wea. Forecasting, 22, 10451062, https://doi.org/10.1175/WAF1040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comstock, I. J., 2011: A classification scheme for landfalling tropical cyclones based on precipitation variables derived from GIS and ground radar analysis. Ph.D. dissertation, University of Alabama, 93 pp., https://ir.ua.edu/handle/123456789/1025.

  • Coniglio, M. C., J. Y. Hwang, and D. J. Stensrud, 2010: Environmental factors in the upscale growth and longevity of MCSs derived from Rapid Update Cycle analyses. Mon. Wea. Rev., 138, 35143539, https://doi.org/10.1175/2010MWR3233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., M. C. Coniglio, A. E. Cohen, and C. M. Mead, 2016: A proposed revision to the definition of “derecho.” Bull. Amer. Meteor. Soc., 97, 935949, https://doi.org/10.1175/BAMS-D-14-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T. D., R. L. Alberty, and D. W. Burgess, 1993: Recording, archiving, and using WSR-88D data. Bull. Amer. Meteor. Soc., 74, 645653, https://doi.org/10.1175/1520-0477(1993)074<0645:RAAUWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunning, J. B., 1986: The Oklahoma-Kansas Preliminary Regional Experiment for STORM-Central. Bull. Amer. Meteor. Soc., 67, 14781486, https://doi.org/10.1175/1520-0477(1986)067<1478:TOKPRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2004: The Bow Echo and MCV Experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85, 10751093, https://doi.org/10.1175/BAMS-85-8-1075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dieleman, S., K. W. Willett, and J. Dambre, 2015: Rotation-invariant convolutional neural networks for galaxy morphology prediction. Mon. Not. Roy. Astron. Soc., 450, 14411459, https://doi.org/10.1093/mnras/stv632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, 2001: Severe convective storms—An overview. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 1–26.

    • Crossref
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elith, J., J. R. Leathwick, and T. Hastie, 2008: A working guide to boosted regression trees. J. Anim. Ecol., 77, 802813, https://doi.org/10.1111/j.1365-2656.2008.01390.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., V. Meunier, B. P. Treserras, A. Cournoyer, and B. Nelson, 2017: On the climatological use of radar data mosaics: Possibilities and challenges. Bull. Amer. Meteor. Soc., 98, 21352148, https://doi.org/10.1175/BAMS-D-15-00256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairman, J. G., Jr., D. M. Schultz, D. J. Kirshbaum, S. L. Gray, and A. I. Barrett, 2016: Climatology of banded precipitation over the contiguous United States. Mon. Wea. Rev., 144, 45534568, https://doi.org/10.1175/MWR-D-16-0015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairman, J. G., Jr., D. M. Schultz, D. J. Kirshbaum, S. L. Gray, and A. I. Barrett, 2017: Climatology of size, shape, and intensity of precipitation features over Great Britain and Ireland. J. Hydrometeor., 18, 15951615, https://doi.org/10.1175/JHM-D-16-0222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., L. R. Leung, S. Hagos, R. A. Houze, C. D. Burleyson, and K. Balaguru, 2016: More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nat. Commun., 7, 13429, https://doi.org/10.1038/ncomms13429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiolleau, T., and R. Roca, 2013: An algorithm for the detection and tracking of tropical mesoscale convective systems using infrared images from geostationary satellite. IEEE Trans. Geosci. Remote Sens., 51, 43024315, https://doi.org/10.1109/TGRS.2012.2227762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and G. S. Forbes, 2001: Mesoscale convective systems. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 323–358.

    • Crossref
    • Export Citation
  • Gagne, D. J., A. McGovern, and J. Brotzge, 2009: Classification of convective areas using decision trees. J. Atmos. Oceanic Technol., 26, 13411353, https://doi.org/10.1175/2008JTECHA1205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., A. McGovern, J. B. Basara, and R. A. Brown, 2012: Tornadic supercell environments analyzed using surface and reanalysis data: A spatiotemporal relational data-mining approach. J. Appl. Meteor. Climatol., 51, 22032217, https://doi.org/10.1175/JAMC-D-11-060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., A. McGovern, and M. Xue, 2014: Machine learning enhancement of storm-scale ensemble probabilistic quantitative precipitation forecasts. Wea. Forecasting, 29, 10241043, https://doi.org/10.1175/WAF-D-13-00108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., A. McGovern, S. E. Haupt, and J. K. Williams, 2017: Evaluation of statistical learning configurations for gridded solar irradiance forecasting. Sol. Energy, 150, 383393, https://doi.org/10.1016/j.solener.2017.04.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., Jr., N. A. Snook, and E. V. Johnson, 2008: Spring and summer severe weather reports over the Midwest as a function of convective mode: A preliminary study. Wea. Forecasting, 23, 101113, https://doi.org/10.1175/2007WAF2006120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., 1998: Mesoscale convective systems in the southeast United States during 1994–95: A survey. Wea. Forecasting, 13, 860869, https://doi.org/10.1175/1520-0434(1998)013<0860:MCSITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection at Night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haberlie, A. M., and W. S. Ashley, 2016: A U.S. climatology of mesoscale convective systems. 15th Annual Student Conf., New Orleans, LA, Amer. Meteor. Soc., S81, https://ams.confex.com/ams/96Annual/webprogram/Paper292206.html.

  • Haberlie, A. M., and W. S. Ashley, 2018: Identifying mesoscale convective systems in radar mosaics. Part II: Tracking. J. Appl. Meteor. Climatol., 57, 15991621, https://doi.org/10.1175/JAMC-D-17-294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haberlie, A. M., W. S. Ashley, and T. Pingel, 2015: The effect of urbanization on the climatology of thunderstorm initiation. Quart. J. Roy. Meteor. Soc., 141, 663675, https://doi.org/10.1002/qj.2499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haberlie, A. M., W. S. Ashley, A. J. Fultz, and S. M. Eagan, 2016: The effect of reservoirs on the climatology of warm‐season thunderstorms in southeast Texas, USA. Int. J. Climatol., 36, 18081820, https://doi.org/10.1002/joc.4461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halverson, J. B., 2014: A mighty wind: The derecho of June 29, 2012. Weatherwise, 67, 2431, https://doi.org/10.1080/00431672.2014.918788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hane, C. E., J. A. Haynes, D. L. Andra, and F. H. Carr, 2008: The evolution of morning convective systems over the U.S. Great Plains during the warm season. Part II: A climatology and the influence of environmental factors. Mon. Wea. Rev., 136, 929944, https://doi.org/10.1175/2007MWR2016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastie, T., R. Tibshirani, and J. Friedman, 2009: Unsupervised learning. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed., T. Hastie, R. Tibshirani, and J. Friedman, Eds., Springer, 485–585.

    • Crossref
    • Export Citation
  • Hilgendorf, E. R., and R. H. Johnson, 1998: A study of the evolution of mesoscale convective systems using WSR-88D data. Wea. Forecasting, 13, 437452, https://doi.org/10.1175/1520-0434(1998)013<0437:ASOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchens, N. M., M. E. Baldwin, and R. J. Trapp, 2012: An object-oriented characterization of extreme precipitation-producing convective systems in the midwestern United States. Mon. Wea. Rev., 140, 13561366, https://doi.org/10.1175/MWR-D-11-00153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hochreiter, S., and J. Schmidhuber, 1997: Long short-term memory. Neural Comput., 9, 17351780, https://doi.org/10.1162/neco.1997.9.8.1735.

  • Hocker, J. E., and J. B. Basara, 2008: A 10-year spatial climatology of squall line storms across Oklahoma. Int. J. Climatol., 28, 765775, https://doi.org/10.1002/joc.1579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.

  • Jirak, I. L., W. R. Cotton, and R. L. McAnelly, 2003: Satellite and radar survey of mesoscale convective system development. Mon. Wea. Rev., 131, 24282449, https://doi.org/10.1175/1520-0493(2003)131<2428:SARSOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolodziej Hobson, A. G., V. Lakshmanan, T. M. Smith, and M. Richman, 2012: An automated technique to categorize storm type from radar and near-storm environment data. Atmos. Res., 111, 104113, https://doi.org/10.1016/j.atmosres.2012.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2012: Imagenet classification with deep convolutional neural networks. Proc. 25th Conf. on Advances in Neural Information Processing Systems, Lake Tahoe, NV, Neural Information Processing Systems Foundation, 1097–1105, https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.

  • Kunkel, K. E., D. R. Easterling, D. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2012: Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. J. Hydrometeor., 13, 11311141, https://doi.org/10.1175/JHM-D-11-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lack, S. A., and N. I. Fox, 2012: Development of an automated approach for identifying convective storm type using reflectivity-derived and near-storm environment data. Atmos. Res., 116, 6781, https://doi.org/10.1016/j.atmosres.2012.02.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., and T. Smith, 2009: Data mining storm attributes from spatial grids. J. Atmos. Oceanic Technol., 26, 23532365, https://doi.org/10.1175/2009JTECHA1257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., and T. Smith, 2010: An objective method of evaluating and devising storm-tracking algorithms. Wea. Forecasting, 25, 701709, https://doi.org/10.1175/2009WAF2222330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., M. Miller, and T. Smith, 2013: Quality control of accumulated fields by applying spatial and temporal constraints. J. Atmos. Oceanic Technol., 30, 745758, https://doi.org/10.1175/JTECH-D-12-00128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeCun, Y., and Y. Bengio, 1995: Convolutional networks for images, speech, and time series. The Handbook of Brain Theory and Neural Networks, M. A. Arbib, Ed., MIT Press, 255–258.

  • Lericos, T. P., H. E. Fuelberg, A. I. Watson, and R. L. Holle, 2002: Warm season lightning distributions over the Florida peninsula as related to synoptic patterns. Wea. Forecasting, 17, 8398, https://doi.org/10.1175/1520-0434(2002)017<0083:WSLDOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, K. A., and B. A. Colle, 2010: The spatial and temporal distribution of organized convective structures over the Northeast and their ambient conditions. Mon. Wea. Rev., 138, 44564474, https://doi.org/10.1175/2010MWR3463.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2011: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 424 pp.

    • Crossref
    • Export Citation
  • Matyas, C. J., 2009: A spatial analysis of radar reflectivity regions within Hurricane Charley (2004). J. Appl. Meteor. Climatol., 48, 130142, https://doi.org/10.1175/2008JAMC1910.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matyas, C. J., 2010: Use of ground-based radar for climate-scale studies of weather and rainfall: Radar and climatology. Geogr. Compass, 4, 12181237, https://doi.org/10.1111/j.1749-8198.2010.00370.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matyas, C. J., 2014: Conditions associated with large rain-field areas for tropical cyclones landfalling over Florida. Phys. Geogr., 35, 93106, https://doi.org/10.1080/02723646.2014.893476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McEnery, J., J. Ingram, Q. Duan, T. Adams, and L. Anderson, 2005: NOAA’s Advanced Hydrologic Prediction Service: Building pathways for better science in water forecasting. Bull. Amer. Meteor. Soc., 86, 375385, https://doi.org/10.1175/BAMS-86-3-375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGovern, A., K. L. Elmore, D. J. Gagne, S. E. Haupt, C. D. Karstens, R. Lagerquist, T. Smith, and J. K. Williams, 2017: Using artificial intelligence to improve real-time decision making for high-impact weather. Bull. Amer. Meteor. Soc., 98, 20732090, https://doi.org/10.1175/BAMS-D-16-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, P. W., and T. L. Mote, 2017: Standardizing the definition of a “pulse” thunderstorm. Bull. Amer. Meteor. Soc., 98, 905913, https://doi.org/10.1175/BAMS-D-16-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulder, K. J., and D. M. Schultz, 2015: Climatology, storm morphologies, and environments of tornadoes in the British Isles: 1980–2012. Mon. Wea. Rev., 143, 22242240, https://doi.org/10.1175/MWR-D-14-00299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, https://doi.org/10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and J. C. Knievel, 2005: Do meteorologists suppress thunderstorms?: Radar-derived statistics and the behavior of moist convection. Bull. Amer. Meteor. Soc., 86, 341358, https://doi.org/10.1175/BAMS-86-3-341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and D. A. Ahijevych, 2007: Convective episodes in the east-central United States. Mon. Wea. Rev., 135, 37073727, https://doi.org/10.1175/2007MWR2098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12, 28252830, http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., J. A. Grim, and M. Steiner, 2015: Assessment of the High-Resolution Rapid Refresh model’s ability to predict mesoscale convective systems using object-based evaluation. Wea. Forecasting, 30, 892913, https://doi.org/10.1175/WAF-D-14-00118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rickenbach, T. M., R. Nieto‐Ferreira, C. Zarzar, and B. Nelson, 2015: A seasonal and diurnal climatology of precipitation organization in the southeastern United States. Quart. J. Roy. Meteor. Soc., 141, 19381956, https://doi.org/10.1002/qj.2500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, https://doi.org/10.1175/MWR2899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., D. J. Seo, M. L. Baeck, and M. D. Hudlow, 1996: An intercomparison study of NEXRAD precipitation estimates. Water Resour. Res., 32, 20352045, https://doi.org/10.1029/96WR00270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, S. R., 2016: The 2015 Atlantic hurricane season: Fewer storms, with some highlights. Weatherwise, 69 (3), 2835, https://doi.org/10.1080/00431672.2016.1159488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theodoridis, S., and K. Koutroumbas, 2003: Pattern Recognition. Academic Press, 689 pp.

  • Trapp, R. J., S. A. Tessendorf, E. S. Godfrey, and H. E. Brooks, 2005: Tornadoes from squall lines and bow echoes. Part I: Climatological distribution. Wea. Forecasting, 20, 2334, https://doi.org/10.1175/WAF-835.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., and R. E. Carbone, 2011: Inferences of weekly cycles in summertime rainfall. J. Geophys. Res., 116, D20213, https://doi.org/10.1029/2011JD015819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Walt, S., S. C. Colbert, and G. Varoquaux, 2011: The NumPy array: A structure for efficient numerical computation. Comput. Sci. Eng., 13, 2230, https://doi.org/10.1109/MCSE.2011.37.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Walt, S., and Coauthors, 2014: Scikit-image: Image processing in Python. PeerJ, 2, e453, https://doi.org/10.7717/peerj.453.

  • Wang, S.-Y., W. Huang, H. Hsu, and R. R. Gillies, 2015: Role of the strengthened El Niño teleconnection in the May 2015 floods over the southern Great Plains. Geophys. Res. Lett., 42, 81408146, https://doi.org/10.1002/2015GL065211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253277, https://doi.org/10.1175/BAMS-85-2-253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and Coauthors, 2015: The Mesoscale Predictability Experiment (MPEX). Bull. Amer. Meteor. Soc., 96, 21272149, https://doi.org/10.1175/BAMS-D-13-00281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westerling, A. L., A. Gershunov, D. R. Cayan, and T. P. Barnett, 2002: Long lead statistical forecasts of area burned in western US wildfires by ecosystem province. Int. J. Wildland Fire, 11, 257266, https://doi.org/10.1071/WF02009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

    • Crossref
    • Export Citation
  • Zheng, A., 2015: Evaluating Machine Learning Models. O’Reilly Media, https://www.oreilly.com/data/free/evaluating-machine-learning-models.csp.

  • Zipser, E. J., 1982: Use of a conceptual model of the life-cycle of mesoscale convective systems to improve very-short-range forecasts. Nowcasting, K. A. Browning, Ed., Academic Press, 191–204.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1317 418 58
PDF Downloads 1403 313 21