Comparisons of Electromagnetic Scattering Properties of Real Hailstones and Spheroids

Zhiyuan Jiang Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Zhiyuan Jiang in
Current site
Google Scholar
PubMed
Close
,
Matthew R. Kumjian Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Matthew R. Kumjian in
Current site
Google Scholar
PubMed
Close
,
Robert S. Schrom Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Robert S. Schrom in
Current site
Google Scholar
PubMed
Close
,
Ian Giammanco Insurance Institute for Business and Home Safety, Richburg, South Carolina

Search for other papers by Ian Giammanco in
Current site
Google Scholar
PubMed
Close
,
Tanya Brown-Giammanco Insurance Institute for Business and Home Safety, Richburg, South Carolina

Search for other papers by Tanya Brown-Giammanco in
Current site
Google Scholar
PubMed
Close
,
Heather Estes Insurance Institute for Business and Home Safety, Richburg, South Carolina

Search for other papers by Heather Estes in
Current site
Google Scholar
PubMed
Close
,
Ross Maiden Insurance Institute for Business and Home Safety, Richburg, South Carolina

Search for other papers by Ross Maiden in
Current site
Google Scholar
PubMed
Close
, and
Andrew J. Heymsfield National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew J. Heymsfield in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Severe (>2.5 cm) hail causes >$5 billion in damage annually in the United States. However, radar sizing of hail remains challenging. Typically, spheroids are used to represent hailstones in radar forward operators and to inform radar hail-sizing algorithms. However, natural hailstones can have irregular shapes and lobes; these details significantly influence the hailstone’s scattering properties. The high-resolution 3D structure of real hailstones was obtained using a laser scanner for hail collected during the 2016–17 Insurance Institute for Business and Home Safety (IBHS) Hail Field Study. Plaster casts of several record hailstones (e.g., Vivian, South Dakota, 2010) were also scanned. The S-band scattering properties of these hailstones were calculated with the discrete dipole approximation (DDA). For comparison, scattering properties of spheroidal approximations of each hailstone (with identical maximum and minimum dimensions and mass) were calculated with the T matrix. The polarimetric radar variables have errors when using spheroids, even for small hail. Spheroids generally have smaller variations in the polarimetric variables than the real hailstones. This increased variability is one reason why the correlation coefficient tends to be lower in observations than in forward-simulated cases using spheroids. Backscatter differential phase δ also is found to have large variance, particularly for large hailstones. Irregular hailstones with a thin liquid layer produce enhanced and more variable values for reflectivity factor at horizontal polarization ZHH, differential reflectivity ZDR, specific differential phase KDP, linear depolarization ratio (LDR), and δ compared with dry hailstones; is also significantly reduced.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiyuan Jiang, zxj113@psu.edu

Abstract

Severe (>2.5 cm) hail causes >$5 billion in damage annually in the United States. However, radar sizing of hail remains challenging. Typically, spheroids are used to represent hailstones in radar forward operators and to inform radar hail-sizing algorithms. However, natural hailstones can have irregular shapes and lobes; these details significantly influence the hailstone’s scattering properties. The high-resolution 3D structure of real hailstones was obtained using a laser scanner for hail collected during the 2016–17 Insurance Institute for Business and Home Safety (IBHS) Hail Field Study. Plaster casts of several record hailstones (e.g., Vivian, South Dakota, 2010) were also scanned. The S-band scattering properties of these hailstones were calculated with the discrete dipole approximation (DDA). For comparison, scattering properties of spheroidal approximations of each hailstone (with identical maximum and minimum dimensions and mass) were calculated with the T matrix. The polarimetric radar variables have errors when using spheroids, even for small hail. Spheroids generally have smaller variations in the polarimetric variables than the real hailstones. This increased variability is one reason why the correlation coefficient tends to be lower in observations than in forward-simulated cases using spheroids. Backscatter differential phase δ also is found to have large variance, particularly for large hailstones. Irregular hailstones with a thin liquid layer produce enhanced and more variable values for reflectivity factor at horizontal polarization ZHH, differential reflectivity ZDR, specific differential phase KDP, linear depolarization ratio (LDR), and δ compared with dry hailstones; is also significantly reduced.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiyuan Jiang, zxj113@psu.edu
Save
  • Aydin, K., and Y. Zhao, 1990: A computational study of polarimetric radar observables in hail. IEEE Trans. Geosci. Remote Sens., 28, 412422, https://doi.org/10.1109/TGRS.1990.572906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aydin, K., T. A. Seliga, and V. Balaji, 1986: Remote sensing of hail with a dual linear polarization radar. J. Climate Appl. Meteor., 25, 14751484, https://doi.org/10.1175/1520-0450(1986)025<1475:RSOHWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balakrishnan, N., and D. S. Zrnić, 1990a: Estimation of rain and hail rates in mixed-phase precipitation. J. Atmos. Sci., 47, 565583, https://doi.org/10.1175/1520-0469(1990)047<0565:EORAHR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balakrishnan, N., and D. S. Zrnić, 1990b: Use of polarization to characterize precipitation and discriminate large hail. J. Atmos. Sci., 47, 15251540, https://doi.org/10.1175/1520-0469(1990)047<1525:UOPTCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blair, S. F., D. R. Deroche, J. M. Boustead, J. W. Leighton, B. L. Barjenbruch, and W. P. Gargan, 2011: A radar-based assessment of the detectability of giant hail. Electron. J. Severe Storms Meteor., 6 (7), http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/87.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and T. A. Seliga, 1977a: Scattering from axisymmetric dielectrics or perfect conductors imbedded in an axisymmetric dielectric. IEEE Trans. Antennas Propag., 25, 575580, https://doi.org/10.1109/TAP.1977.1141642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and T. A. Seliga, 1977b: Scattering from non-spherical hydrometeors. Ann. Telecommun., 32, 392397, https://doi.org/10.1007/BF03003484.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. 1st ed. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Bringi, V. N., T. A. Seliga, and K. Aydin, 1984: Hail detection with a differential reflectivity radar. Science, 225, 11451147, https://doi.org/10.1126/science.225.4667.1145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., J. Vivekanandan, and J. D. Tuttle, 1986: Multiparameter radar measurements in Colorado convective storms. Part II: Hail detection studies. J. Atmos. Sci., 43, 25642577, https://doi.org/10.1175/1520-0469(1986)043<2564:MRMICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chagnon, S. A., D. Chagnon, and S. D. Hilberg, 2009: Hailstorms across the nation: An atlas about hail and its damages. ISWS Contract Rep. 2009-12, 101 pp., https://www.isws.illinois.edu/pubdoc/CR/ISWSCR2009-12.pdf.

  • Depue, T. K., P. C. Kennedy, and S. A. Rutledge, 2007: Performance of the hail differential reflectivity HDR polarimetric radar hail indicator. J. Appl. Meteor. Climatol., 46, 12901301, https://doi.org/10.1175/JAM2529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeVoe, H., 1964: Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction. J. Chem. Phys., 41, 393400, https://doi.org/10.1063/1.1725879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Draine, B. T., and P. J. Flatau, 1994: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Amer., 11A, 14911499, https://doi.org/10.1364/JOSAA.11.001491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giammanco, I. M., B. R. Maiden, H. Estes, and T. M. Brown-Giammanco, 2017: Using 3D laser scanning technology to create digital models of hailstones. Bull. Amer. Meteor. Soc., 98, 13411347, https://doi.org/10.1175/BAMS-D-15-00314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., I. M. Giammanco, and R. Wright, 2014: Terminal velocities and kinetic energies of natural hailstones. Geophys. Res. Lett., 41, 86668672, https://doi.org/10.1002/2014GL062324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Höller, H., M. Hagen, P. F. Meischner, V. N. Bringi, and J. C. Hubbert, 1994: Life cycle and precipitation formation in a hybrid-type hailstorm revealed by polarimetric and Doppler radar measurements. J. Atmos. Sci., 51, 25002522, https://doi.org/10.1175/1520-0469(1994)051<2500:LCAPFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., V. N. Bringi, L. D. Carey, and S. Bolen, 1998: CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J. Appl. Meteor., 37, 749775, https://doi.org/10.1175/1520-0450(1998)037<0749:CCPRMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., and E. A. Mueller, 1985: Estimation of propagation-differential phase shift from sequential orthogonal linear polarization radar measurements. J. Atmos. Oceanic Technol., 2, 133137, https://doi.org/10.1175/1520-0426(1985)002<0133:EOPDPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Z., M. Oue, J. Verlinde, E. E. Clothiaux, K. Aydin, G. Botta, and Y. Lu, 2017: What can we conclude about the real aspect ratios of ice particle aggregates from two-dimensional images? J. Appl. Meteor. Climatol., 56, 725734, https://doi.org/10.1175/JAMC-D-16-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, M., Y. Jung, D. T. Dawson, and M. Xue, 2016: Comparison of simulated polarimetric signatures in idealized supercell storms using two-moment bulk microphysics schemes in WRF. Mon. Wea. Rev., 144, 971996, https://doi.org/10.1175/MWR-D-15-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, Y., G. Zhang, and M. Xue, 2008: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 22282245, https://doi.org/10.1175/2007MWR2083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and G. Zhang, 2010: Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysics scheme. J. Appl. Meteor. Climatol., 49, 146163, https://doi.org/10.1175/2009JAMC2178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaltenboeck, R., and A. V. Ryzhkov, 2013: Comparison of polarimetric signatures of hail at S and C bands for different hail sizes. Atmos. Res., 123, 323336, https://doi.org/10.1016/j.atmosres.2012.05.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., S. A. Rutledge, W. A. Petersen, and V. N. Bringi, 2001: Polarimetric radar observations of hail formation. J. Appl. Meteor., 40, 13471366, https://doi.org/10.1175/1520-0450(2001)040<1347:PROOHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and N. C. Knight, 1970a: The falling behavior of hailstones. J. Atmos. Sci., 27, 672681, https://doi.org/10.1175/1520-0469(1970)027<0672:TFBOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and N. C. Knight, 1970b: Lobe structures of hailstones. J. Atmos. Sci., 27, 667671, https://doi.org/10.1175/1520-0469(1970)027<0667:LSOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Operational Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and Z. J. Lebo, 2016: Large accumulations of small hail. 28th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 8A.2, https://ams.confex.com/ams/28SLS/webprogram/Paper301237.html.

  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, https://doi.org/10.1175/2007JAMC1874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., J. C. Picca, S. Ganson, A. V. Ryzhkov, J. Krause, D. Zrnić, and A. Khain, 2010a: Polarimetric radar characteristics of large hail. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 11.2, https://ams.confex.com/ams/pdfpapers/176043.pdf.

  • Kumjian, M. R., A. V. Ryzhkov, V. M. Melnikov, and T. J. Schuur, 2010b: Rapid-scan super-resolution observations of a cyclic supercell with a dual-polarization WSR-88D. Mon. Wea. Rev., 138, 37623786, https://doi.org/10.1175/2010MWR3322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. M. Ganson, and A. V. Ryzhkov, 2012: Raindrop freezing in deep convective updrafts: A microphysical and polarimetric model. J. Atmos. Sci., 69, 34713490, https://doi.org/10.1175/JAS-D-12-067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. P. Khain, N. BenMoshe, E. Ilotoviz, A. V. Ryzhkov, and V. T. J. Phillips, 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. Climatol., 53, 18201843, https://doi.org/10.1175/JAMC-D-13-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., Z. J. Lebo, and A. Ward, 2019: Storms producing large accumulations of small hail. J. Appl. Meteor. Climatol., https://doi.org/10.1175/JAMC-D-18-0073.1, in press.

    • Crossref
    • Export Citation
  • Kunkel, K. E., and Coauthors, 2013: Monitoring and understanding trends in extreme storms: State of knowledge. Bull. Amer. Meteor. Soc., 94, 499514, https://doi.org/10.1175/BAMS-D-11-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leitao, M. J., and P. A. Watson, 1984: Application of dual linearly polarized radar data to prediction of microwave path attenuation at 10-30 GHz. Radio Sci., 19, 209221, https://doi.org/10.1029/RS019i001p00209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Y., Z. Jiang, K. Aydin, J. Verlinde, E. E. Clothiaux, and G. Botta, 2016: A polarimetric scattering database for non-spherical ice particles at microwave wavelengths. Atmos. Meas. Tech., 9, 51195134, https://doi.org/10.5194/amt-9-5119-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirković, D., 2015: Computational electromagnetic applied to scattering observed by polarimetric weather radar. Ph.D. dissertation, School of Meteorology, University of Oklahoma, 241 pp.

  • Mishchenko, M. I., 2000: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt., 39, 10261031, https://doi.org/10.1364/AO.39.001026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Weather Service–San Antonio, 2016: San Antonio hail April 2016 weather event summary. Austin/San Antonio Weather Forecast Office, 5 pp., https://www.weather.gov/media/ewx/wxevents/ewx-20160412.pdf.

  • Ortega, K. L., J. M. Krause, and A. V. Ryzhkov, 2016: Polarimetric radar characteristics of melting hail. Part III: Validation of the algorithm for hail size discrimination. J. Appl. Meteor. Climatol., 55, 829848, https://doi.org/10.1175/JAMC-D-15-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-Y. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, https://doi.org/10.1175/2008WAF2222205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picca, J. C., and A. V. Ryzhkov, 2012: A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Mon. Wea. Rev., 140, 13851403, https://doi.org/10.1175/MWR-D-11-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and A. J. Heymsfield, 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 27542763, https://doi.org/10.1175/1520-0469(1987)044<2754:MASOGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., V. Levizzani, and H. R. Pruppacher, 1984: A wind tunnel and theoretical study on the melting behavior of atmospheric ice particles: III. Experiment and theory for spherical ice particles of radius >500 μm. J. Atmos. Sci., 41, 381388, https://doi.org/10.1175/1520-0469(1984)041<0381:AWTATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2001: Interpretation of polarimetric radar covariance matrix for meteorological scatterers: Theoretical analysis. J. Atmos. Oceanic Technol., 18, 315328, https://doi.org/10.1175/1520-0426(2001)018<0315:IOPRCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2007: The impact of beam broadening on the quality of radar polarimetric data. J. Atmos. Oceanic Technol., 24, 729744, https://doi.org/10.1175/JTECH2003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 1998: Beamwidth effects on the differential phase measurements of rain. J. Atmos. Oceanic Technol., 15, 624634, https://doi.org/10.1175/1520-0426(1998)015<0624:BEOTDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894, https://doi.org/10.1175/2010JAMC2363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and A. P. Khain, 2013a: Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol., 52, 28492870, https://doi.org/10.1175/JAMC-D-13-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and P. Zhang, 2013b: Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteor. Climatol., 52, 28712886, https://doi.org/10.1175/JAMC-D-13-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and Coauthors, 2017: Estimation of depolarization ratio using weather radars with simultaneous transmission/reception. J. Appl. Meteor. Climatol., 56, 17971816, https://doi.org/10.1175/JAMC-D-16-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., 2018: Radar measurements and simulations of ice crystal growth in Arctic mixed-phase clouds. Ph.D. dissertation, Department of Meteorology and Atmospheric Science, The Pennsylvania State University, 180 pp.

  • Snyder, J. C., H. B. Bluestein, G. Zhang, and S. J. Frasier, 2010: Attenuation correction and hydrometeor classification of high-resolution, X-band, dual-polarized mobile radar measurements in severe convective storms. J. Atmos. Oceanic Technol., 27, 19792001, https://doi.org/10.1175/2010JTECHA1356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yurkin, M. A., and A. G. Hoekstra, 2011: The discrete-dipole approximation code ADDA: Capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transfer, 112, 22342247, https://doi.org/10.1016/j.jqsrt.2011.01.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Z., S. E. Yuter, R. A. Houze, and D. E. Kingsmill, 2001: Microphysics of the rapid development of heavy convective precipitation. Mon. Wea. Rev., 129, 18821904, https://doi.org/10.1175/1520-0493(2001)129<1882:MOTRDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., N. Balakrishnan, and M. Sachidanandan, 1988: Processing and interpretation of alternately polarised weather radar echoes. Int. Geoscience and Remote Sensing Symposium, Remote Sensing: Moving Toward the 21st Century, Edinburgh, United Kingdom, IEEE, 243–245, https://doi.org/10.1109/IGARSS.1988.570103.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 520 189 11
PDF Downloads 513 161 9