North American Supercell Environments in Atmospheric Reanalyses and RUC-2

Austin T. King Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota

Search for other papers by Austin T. King in
Current site
Google Scholar
PubMed
Close
and
Aaron D. Kennedy Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota

Search for other papers by Aaron D. Kennedy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A suite of modern atmospheric reanalyses is analyzed to determine how they represent North American supercell environments. This analysis is performed by comparing a database of Rapid Update Cycle (RUC-2) proximity soundings with profiles derived from the nearest grid point in each reanalysis. Parameters are calculated using the Sounding and Hodograph Analysis and Research Program in Python (SHARPpy), an open-source Python sounding-analysis package. Representation of supercell environments varies across the reanalyses, and the results have ramifications for climatological studies that use these datasets. In particular, thermodynamic parameters such as the convective available potential energy (CAPE) show the widest range in biases, with reanalyses falling into two camps. The North American Regional Reanalysis (NARR) and the Japanese 55-year Reanalysis (JRA-55) are similar to RUC-2, but other reanalyses have a substantial negative bias. The reasons for these biases vary and range from thermodynamic biases at the surface to evidence of convective contamination. Overall, it is found that thermodynamic biases feed back to other convective parameters that incorporate CAPE directly or indirectly via the effective layer. As a result, significant negative biases are found for indices such as the supercell composite parameter. These biases are smallest for NARR and JRA-55. Kinematic parameters are more consistent across the reanalyses. Given the issues with thermodynamic properties, better segregation of soundings by storm type is found for fixed-layer parameters than for effective-layer shear parameters. Although no reanalysis can exactly reproduce the results of earlier RUC-2 studies, many of the reanalyses can broadly distinguish between environments that are significantly tornadic versus nontornadic.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aaron David Kennedy, kennedya@aero.und.edu

Abstract

A suite of modern atmospheric reanalyses is analyzed to determine how they represent North American supercell environments. This analysis is performed by comparing a database of Rapid Update Cycle (RUC-2) proximity soundings with profiles derived from the nearest grid point in each reanalysis. Parameters are calculated using the Sounding and Hodograph Analysis and Research Program in Python (SHARPpy), an open-source Python sounding-analysis package. Representation of supercell environments varies across the reanalyses, and the results have ramifications for climatological studies that use these datasets. In particular, thermodynamic parameters such as the convective available potential energy (CAPE) show the widest range in biases, with reanalyses falling into two camps. The North American Regional Reanalysis (NARR) and the Japanese 55-year Reanalysis (JRA-55) are similar to RUC-2, but other reanalyses have a substantial negative bias. The reasons for these biases vary and range from thermodynamic biases at the surface to evidence of convective contamination. Overall, it is found that thermodynamic biases feed back to other convective parameters that incorporate CAPE directly or indirectly via the effective layer. As a result, significant negative biases are found for indices such as the supercell composite parameter. These biases are smallest for NARR and JRA-55. Kinematic parameters are more consistent across the reanalyses. Given the issues with thermodynamic properties, better segregation of soundings by storm type is found for fixed-layer parameters than for effective-layer shear parameters. Although no reanalysis can exactly reproduce the results of earlier RUC-2 studies, many of the reanalyses can broadly distinguish between environments that are significantly tornadic versus nontornadic.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aaron David Kennedy, kennedya@aero.und.edu
Save
  • Allen, J. T., and D. J. Karoly, 2014: A climatology of Australian severe thunderstorm environments 1979–2011: Inter-annual variability and ENSO influence. Int. J. Climatol., 34, 8197, https://doi.org/10.1002/joc.3667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, https://doi.org/10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blamey, R. C., C. Middleton, C. Lennard, and C. J. C. Reason, 2016: A climatology of potential severe convective environments across South Africa. Climate Dyn., 49, 21612178, https://doi.org/10.1007/s00382-016-3434-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumberg, W. G., K. T. Halbert, T. A. Supinie, P. T. Marsh, R. L. Thompson, and J. A. Hart, 2017: SHARPpy: An open source sounding analysis toolkit for the atmospheric sciences. Bull. Amer. Meteor. Soc., 98, 16251636, https://doi.org/10.1175/BAMS-D-15-00309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2009: Proximity soundings for severe convection for Europe and the United States from reanalysis data. Atmos. Res., 93, 546553, https://doi.org/10.1016/j.atmosres.2008.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67–68, 7394, https://doi.org/10.1016/S0169-8095(03)00045-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., A. R. Anderson, K. Riemann, I. Ebbers, and H. Flachs, 2007: Climatological aspects of convective parameters from the NCAR/NCEP reanalysis. Atmos. Res., 83, 294305, https://doi.org/10.1016/j.atmosres.2005.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179, https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., M. A. Magsig, J. Wurman, D. C. Dowell, and Y. Richardson, 2002: Radar observations of the 3 May 1999 Oklahoma City tornado. Wea. Forecasting, 17, 456471, https://doi.org/10.1175/1520-0434(2002)017<0456:ROOTMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Coniglio, M. C., 2012: Verification of RUC 0–1-h forecasts and SPC mesoscale analyses using VORTEX2 soundings. Wea. Forecasting, 27, 667683, https://doi.org/10.1175/WAF-D-11-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, J. M., 1993: Small tornadic supercells in the central plains. Preprints, 17th Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 305–309.

  • Davies, J. M., 2004: Estimations of CIN and LFC associated with tornadic and nontornadic supercells. Wea. Forecasting, 19, 714726, https://doi.org/10.1175/1520-0434(2004)019<0714:EOCALA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and E. N. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9, 625629, https://doi.org/10.1175/1520-0434(1994)009<0625:TEONTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2015: New EFI parameters for forecasting severe convection. ECMWF Newsletter, No. 144, ECMWF, Reading, United Kingdom, 27–32, https://www.ecmwf.int/sites/default/files/elibrary/2015/17324-new-efi-parameters-forecasting-severe-convection.pdf.

  • Edwards, R., and R. L. Thompson, 2009: Comments on “The North Dakota tornadic supercells of 18 July 2004: Issues concerning high LCL heights and evapotranspiration.” Wea. Forecasting, 24, 11491158, https://doi.org/10.1175/2009WAF2222204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., and W. S. Ashley, 2011: Climatology of potentially severe convective environments from North American regional reanalysis. Electron. J. Severe Storms Meteor., 6 (8), http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/85.

    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., T. L. Mote, and H. E. Brooks, 2014a: Severe-thunderstorm reanalysis environments and collocated radiosonde observations. J. Appl. Meteor. Climatol., 53, 742751, https://doi.org/10.1175/JAMC-D-13-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., C. A. Ramseyer, and T. L. Mote, 2014b: Future convective environments using NARCCAP. Int. J. Climatol., 34, 16991705, https://doi.org/10.1002/joc.3769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halbert, K. T., W. Blumberg, and P. Marsh, 2015: SHARPpy: Fueling the Python cult. Fifth Symp. on Advances in Modeling and Analysis Using Python, Phoenix AZ, Amer. Meteor. Soc., 402, https://ams.confex.com/ams/95Annual/webprogram/Paper270233.html.

  • Hart, J. A., and W. Korotky, 1991: The SHARP workstation vl.50 user’s guide. NOAA/National Weather Service, 30 pp. [Available from NWS Eastern Region Headquarters, 630 Johnson Ave., Bohemia, NY 11716.]

  • Johns, R. H., J. M. Davies, and P. M. Leftwich, 1993: Some wind and instability parameters associated with strong and violent tornadoes. Part II: Variations in the combinations of wind and instability parameters. The Tornado: Its Structure, Dynamics, Hazards, and Prediction, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 583–590.

    • Crossref
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kellenbenz, D. J., T. J. Grafenauer, and J. M. Davies, 2007: The North Dakota tornadic supercells of 18 July 2004: Issues concerning high LCL heights and evapotranspiration. Wea. Forecasting, 22, 12001213, https://doi.org/10.1175/2007WAF2006109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, A., X. Dong, B. Xi, S. Xie, Y. Zhang, and J. Chen, 2011: A comparison of MERRA and NARR reanalyses with the DOE ARM SGP data. J. Climate, 24, 45414557, https://doi.org/10.1175/2011JCLI3978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M-I., and Coauthors, 2007: An analysis of the warm-season diurnal cycle over the continental United States and northern Mexico in general circulation models. J. Hydrometeor., 8, 344366, https://doi.org/10.1175/JHM581.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lepore, C., D. Veneziano, and A. Molini, 2015: Temperature and CAPE dependence of rainfall extremes in the eastern United States. Geophys. Res. Lett., 42, 7483, https://doi.org/10.1002/2014GL062247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2002: Mobile mesonet observations on 3 May 1999. Wea. Forecasting, 17, 430444, https://doi.org/10.1175/1520-0434(2002)017<0430:MMOOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., C. Hannon, J. Frame, E. Lancaster, A. Pietrycha, R. Edwards, and R. L. Thompson, 2003: Characteristics of vertical wind profiles near supercells obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12621272, https://doi.org/10.1175/1520-0434(2003)018<1262:COVWPN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, P. T., H. E. Brooks, and D. J. Karoly, 2007: Assessment of the severe weather environment in North America simulated by a global climate model. Atmos. Sci. Lett., 8, 100106, https://doi.org/10.1002/asl.159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, P. T., H. E. Brooks, and D. J. Karoly, 2009: Preliminary investigation into the severe thunderstorm environment of Europe simulated by the Community Climate System Model 3. Atmos. Res., 93, 607618, https://doi.org/10.1016/j.atmosres.2008.09.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002, https://doi.org/10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., 2003: Refined supercell and tornado forecast parameters. Wea. Forecasting, 18, 530535, https://doi.org/10.1175/1520-0434(2003)18<530:RSATFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reames, L. J., 2017: Diurnal variations in severe weather forecast parameters of Rapid Update Cycle-2 tornado proximity environments. Wea. Forecasting, 32, 743761, https://doi.org/10.1175/WAF-D-16-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., D. M. Schultz, and R. Romero, 2002: Synoptic regulation of the 3 May 1999 tornado outbreak. Wea. Forecasting, 17, 399429, https://doi.org/10.1175/1520-0434(2002)017<0399:SROTMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero, R., M. Gayà, and C. A. Doswell III, 2007: European climatology of severe convective storm environmental parameters: A test for significant tornado events. Atmos. Res., 83, 389404, https://doi.org/10.1016/j.atmosres.2005.06.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherburn, K., M. Parker, J. King, and G. Lackmann, 2016: Composite environments of severe and nonsevere high-shear, low-CAPE convective events. Wea. Forecasting, 31, 18991927, https://doi.org/10.1175/WAF-D-16-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and S. J. Weiss, 2002: Mesoscale model ensemble forecasts of the 3 May 1999 tornado outbreak. Wea. Forecasting, 17, 526543, https://doi.org/10.1175/1520-0434(2002)017<0526:MMEFOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., and R. Edwards, 2000: An overview of environmental conditions and forecast implications of the 3 May 1999 tornado outbreak. Wea. Forecasting, 15, 682699, https://doi.org/10.1175/1520-0434(2000)015<0682:AOOECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, https://doi.org/10.1175/WAF969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., N. S. Diffenbaugh, H. E. Brooks, M. E. Baldwin, E. D. Robinson, and J. S. Pal, 2007: Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc. Natl. Acad. Sci. USA, 104, 19 71919 723, https://doi.org/10.1073/pnas.0705494104.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 909 211 15
PDF Downloads 772 146 13