A Moment-Based Polarimetric Radar Forward Operator for Rain Microphysics

Matthew R. Kumjian Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Matthew R. Kumjian in
Current site
Google Scholar
PubMed
Close
,
Charlotte P. Martinkus Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Charlotte P. Martinkus in
Current site
Google Scholar
PubMed
Close
,
Olivier P. Prat North Carolina Institute for Climate Studies, North Carolina State University, Asheville, North Carolina

Search for other papers by Olivier P. Prat in
Current site
Google Scholar
PubMed
Close
,
Scott Collis Argonne National Laboratory, Chicago, Illinois

Search for other papers by Scott Collis in
Current site
Google Scholar
PubMed
Close
,
Marcus van Lier-Walqui Center for Climate Systems Research, Columbia University, and NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Marcus van Lier-Walqui in
Current site
Google Scholar
PubMed
Close
, and
Hugh C. Morrison National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Hugh C. Morrison in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

There is growing interest in combining microphysical models and polarimetric radar observations to improve our understanding of storms and precipitation. Mapping model-predicted variables into the radar observational space necessitates a forward operator, which requires assumptions that introduce uncertainties into model–observation comparisons. These include uncertainties arising from the microphysics scheme a priori assumptions of a fixed drop size distribution (DSD) functional form, whereas natural DSDs display far greater variability. To address this concern, this study presents a moment-based polarimetric radar forward operator with no fundamental restrictions on the DSD form by linking radar observables to integrated DSD moments. The forward operator is built upon a dataset of >200 million realistic DSDs from one-dimensional bin microphysical rain-shaft simulations, and surface disdrometer measurements from around the world. This allows for a robust statistical assessment of forward operator uncertainty and quantification of the relationship between polarimetric radar observables and DSD moments. Comparison of “truth” and forward-simulated vertical profiles of the polarimetric radar variables are shown for bin simulations using a variety of moment combinations. Higher-order moments (especially those optimized for use with the polarimetric radar variables: the sixth and ninth) perform better than the lower-order moments (zeroth and third) typically predicted by many bulk microphysics schemes.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew R. Kumjian, kumjian@psu.edu

Abstract

There is growing interest in combining microphysical models and polarimetric radar observations to improve our understanding of storms and precipitation. Mapping model-predicted variables into the radar observational space necessitates a forward operator, which requires assumptions that introduce uncertainties into model–observation comparisons. These include uncertainties arising from the microphysics scheme a priori assumptions of a fixed drop size distribution (DSD) functional form, whereas natural DSDs display far greater variability. To address this concern, this study presents a moment-based polarimetric radar forward operator with no fundamental restrictions on the DSD form by linking radar observables to integrated DSD moments. The forward operator is built upon a dataset of >200 million realistic DSDs from one-dimensional bin microphysical rain-shaft simulations, and surface disdrometer measurements from around the world. This allows for a robust statistical assessment of forward operator uncertainty and quantification of the relationship between polarimetric radar observables and DSD moments. Comparison of “truth” and forward-simulated vertical profiles of the polarimetric radar variables are shown for bin simulations using a variety of moment combinations. Higher-order moments (especially those optimized for use with the polarimetric radar variables: the sixth and ninth) perform better than the lower-order moments (zeroth and third) typically predicted by many bulk microphysics schemes.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew R. Kumjian, kumjian@psu.edu
Save
  • Ackerman, T. P., and G. M. Stokes, 2003: The Atmospheric Radiation Measurement program. Phys. Today, 56, 3844, https://doi.org/10.1063/1.1554135.

  • Amezcua, J., and P. J. V. Leeuwen, 2014: Gaussian anamorphosis in the analysis step of the EnKF: A joint state-variable/observation approach. Tellus, 66A, https://doi.org/10.3402/tellusa.v66.23493.

    • Crossref
    • Export Citation
  • Andrić, J., M. R. Kumjian, D. S. Zrnić, J. M. Straka, and V. M. Melnikov, 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700, https://doi.org/10.1175/JAMC-D-12-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, H. C., and R. A. Houze Jr., 2016: Comparison of observed and simulated spatial patterns of ice microphysical processes in tropical oceanic mesoscale convective systems. J. Geophys. Res., 121, 82698296, https://doi.org/10.1002/2016JD025074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851864, https://doi.org/10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and C. Chuang, 1987: A new model for the equilibrium shape of raindrops. J. Atmos. Sci., 44, 15091524, https://doi.org/10.1175/1520-0469(1987)044<1509:ANMFTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., 2016: The GIGG-EnKF: Ensemble Kalman filtering for highly skewed non-negative uncertainty distributions. Quart. J. Roy. Meteor. Soc., 142, 13951412, https://doi.org/10.1002/qj.2742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2005: Corrigendum. J. Appl. Meteor., 44, 186, https://doi.org/10.1175/1520-0450(2005)44<186:C>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. 1st ed. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Chen, J.-P., and S.-T. Liu, 2004: Physically based two-moment bulk water parameterization for warm-cloud microphysics. Quart. J. Roy. Meteor. Soc., 130, 5178, https://doi.org/10.1256/qj.03.41.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., E. R. Mansell, Y. Jung, L. J. Wicker, and M. R. Kumjian, 2014: Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail. J. Atmos. Sci., 71, 276299, https://doi.org/10.1175/JAS-D-13-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., P. E. Roundy, C. J. Schreck, A. Vintzileos, and C. Zhang, 2013: Large-scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Mon. Wea. Rev., 141, 41734196, https://doi.org/10.1175/MWR-D-13-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S., Z. Feng, C. D. Burleyson, K.-S. S. Lim, C. N. Long, D. Wu, and G. Thompson, 2014: Evaluation of convection-permitting model simulations of cloud populations associated with the Madden-Julian Oscillation using data collected during the AMIE/DYNAMO field campaign. J. Geophys. Res. Atmos., 119, 12 05212 068, https://doi.org/10.1002/2014JD022143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodyss, D., 2011: Ensemble state estimation for nonlinear systems using polynomial expansions in the innovation. Mon. Wea. Rev., 139, 35713588, https://doi.org/10.1175/2011MWR3558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, M., Y. Jung, D. T. Dawson, and M. Xue, 2016: Comparison of simulated polarimetric signatures in idealized supercell storms using two-moment bulk microphysics schemes in WRF. Mon. Wea. Rev., 144, 971996, https://doi.org/10.1175/MWR-D-15-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joss, J., and A. Waldvogel, 1967: A spectrograph for raindrops with automatic interpretation. Pure Appl. Geophys., 68, 240, https://doi.org/10.1007/BF00874898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, Y., G. Zhang, and M. Xue, 2008: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 22282245, https://doi.org/10.1175/2007MWR2083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and G. Zhang, 2010a: Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysics scheme. J. Appl. Meteor. Climatol., 49, 146163, https://doi.org/10.1175/2009JAMC2178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and G. Zhang, 2010b: Simultaneous estimation of microphysical parameters and the atmospheric state using simulated polarimetric radar data and an ensemble Kalman filter in the presence of an observation operator error. Mon. Wea. Rev., 138, 539562, https://doi.org/10.1175/2009MWR2748.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keil, C., A. Tafferner, H. Mannstein, and U. Schlättler, 2003: Evaluating high-resolution model forecasts of European winter storms by use of satellite and radar observations. Wea. Forecasting, 18, 732747, https://doi.org/10.1175/1520-0434(2003)018<0732:EHMFOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., and A. Belochitski, 2012: Parameterization of cloud microphysics based on full integral moments. J. Atmos. Sci., 69, 22292242, https://doi.org/10.1175/JAS-D-11-0268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602617, https://doi.org/10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013a: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1 (19), 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013b: Principles and applications of dual-polarization weather radar. Part II: Warm- and cold-season applications. J. Oper. Meteor., 1 (20), 243264, https://doi.org/10.15191/nwajom.2013.0120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2018: Weather radars. Remote Sensing of Clouds and Precipitation, C. Andronache, Ed., Springer-Verlag, 15–63.

    • Crossref
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2010: The impact of evaporation on polarimetric characteristics of rain: Theoretical model and practical implications. J. Appl. Meteor. Climatol., 49, 12471267, https://doi.org/10.1175/2010JAMC2243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 20422060, https://doi.org/10.1175/JAS-D-11-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and O. P. Prat, 2014: The impact of raindrop collisional processes on the polarimetric radar variables. J. Atmos. Sci., 71, 30523067, https://doi.org/10.1175/JAS-D-13-0357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. M. Ganson, and A. V. Ryzhkov, 2012: Freezing of raindrops in deep convective updrafts: A microphysical and polarimetric model. J. Atmos. Sci., 69, 34713490, https://doi.org/10.1175/JAS-D-12-067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. P. Khain, N. Benmoshe, E. Ilotoviz, A. V. Ryzhkov, and V. T. J. Phillips, 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. Climatol., 53, 18201843, https://doi.org/10.1175/JAMC-D-13-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., Z. J. Lebo, and H. C. Morrison, 2015: On the mechanisms of rain formation in an idealized supercell storm. Mon. Wea. Rev., 143, 27542773, https://doi.org/10.1175/MWR-D-14-00402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laroche, S., W. Szyrmer, and I. Zawadzki, 2005: A microphysical bulk formulation based on scaling normalization of the particle size distribution. Part II: Data assimilation into physical processes. J. Atmos. Sci., 62, 42224237, https://doi.org/10.1175/JAS3621.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, G. W., I. Zawadzki, W. Szyrmer, D. Sempere-Torres, and R. Uijlenhoet, 2004: A general approach to double-moment normalization of drop size distributions. J. Appl. Meteor., 43, 264281, https://doi.org/10.1175/1520-0450(2004)043<0264:AGATDN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and R. C. Srivastava, 2001: An analytical solution for raindrop evaporation and its application to radar rainfall measurements. J. Appl. Meteor., 40, 16071616, https://doi.org/10.1175/1520-0450(2001)040<1607:AASFRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, C. N., J. H. Mather, and T. P. Ackerman, 2016: The ARM Tropical Western Pacific (TWP) Sites. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-15-0024.1.

    • Crossref
    • Export Citation
  • Maki, M., S.-G. Park, and V. N. Bringi, 2005: Effect of natural variations in rain drop size distributions on rain rate estimators of 3 cm wavelength polarimetric radar. J. Meteor. Soc. Japan, 83, 871893, https://doi.org/10.2151/jmsj.83.871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and J. M. Voyles, 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, https://doi.org/10.1175/BAMS-D-11-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., 2004: Simultaneous transmission mode for the polarimetric WSR-88D. NOAA/NSSL Rep., 84 pp., https://www.nssl.noaa.gov/publications/wsr88d_reports/SHV_statistics.pdf.

  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, https://doi.org/10.1175/JAS3535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. A., K. Nitschke, T. P. Ackerman, W. R. Ferrell, N. Hickmon, and M. Ivey, 2016: The ARM Mobile Facilities. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-15-0051.1.

    • Crossref
    • Export Citation
  • Mishchenko, M. I., 2000: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt., 39, 10261031, https://doi.org/10.1364/AO.39.001026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H. C., M. R. Kumjian, C. P. Martinkus, O. P. Prat, and M. van Lier-Walqui, 2019: A generalized n-moment normalization method for deriving raindrop size distribution scaling relationships. J. Appl. Meteor. Climatol., https://doi.org/10.1175/JAMC-D-18-0060.1, in press.

    • Crossref
    • Export Citation
  • Petäjä, T., and Coauthors, 2016: BAECC: A field campaign to elucidate the impact of biogenic aerosols on clouds and climate. Bull. Amer. Meteor. Soc., 97, 19091928, https://doi.org/10.1175/BAMS-D-14-00199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfeifer, M., G. C. Craig, M. Hagen, and C. Keil, 2008: A polarimetric radar forward operator for model evaluation. J. Appl. Meteor. Climatol., 47, 32023220, https://doi.org/10.1175/2008JAMC1793.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and A. P. Barros, 2007: Exploring the use of a column model for the characterization of microphysical processes in warm rain: Results from a homogeneous rainshaft model. Adv. Geosci., 10, 145152, https://doi.org/10.5194/adgeo-10-145-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and A. P. Barros, 2009: Exploring the transient behavior of ZR relationships: Implications for radar rainfall estimation. J. Appl. Meteor. Climatol., 48, 21272143, https://doi.org/10.1175/2009JAMC2165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., A. P. Barros, and C. R. Williams, 2008: An intercomparison of model simulations and VPR estimates of the vertical structure of warm stratiform rain during TWP-ICE. J. Appl. Meteor. Climatol., 47, 27972815, https://doi.org/10.1175/2008JAMC1801.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., A. P. Barros, and F. Y. Testik, 2012: On the influence of raindrop collision outcomes on equilibrium drop size distributions. J. Atmos. Sci., 69, 15341546, https://doi.org/10.1175/JAS-D-11-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and R. L. Pitter, 1971: A semi-empirical determination of the shape of cloud and rain drops. J. Atmos. Sci., 28, 8694, https://doi.org/10.1175/1520-0469(1971)028<0086:ASEDOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putnam, B. J., M. Xue, Y. Jung, N. Snook, and G. Zhang, 2014: The analysis and prediction of microphysical states and polarimetric radar variables in a mesoscale convective system using double-moment microphysics, multinetwork radar data, and the ensemble Kalman filter. Mon. Wea. Rev., 142, 141162, https://doi.org/10.1175/MWR-D-13-00042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putnam, B. J., M. Xue, Y. Jung, G. Zhang, and F. Kong, 2017: Simulation of polarimetric radar variables from 2013 CAPS Spring Experiment storm-scale ensemble forecasts and evaluation of microphysics schemes. Mon. Wea. Rev., 145, 4973, https://doi.org/10.1175/MWR-D-15-0415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. Pinsky, A. Pokrovsky, and A. P. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894, https://doi.org/10.1175/2010JAMC2363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and A. P. Khain, 2013a: Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol., 52, 28492870, https://doi.org/10.1175/JAMC-D-13-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and P. Zhang, 2013b: Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteor. Climatol., 52, 28712886, https://doi.org/10.1175/JAMC-D-13-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sachidananda, M., and D. Zrnić, 1986: Differential propagation phase shift and rainfall rate estimation. Radio Sci., 21, 235247, https://doi.org/10.1029/RS021i002p00235.

    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, A. Shapiro, K. Brewster, and J. Gao, 2011: The analysis and prediction of the 8–9 May 2007 Oklahoma tornadic mesoscale convective system by assimilating WSR-88D and CASA radar data using 3DVAR. Mon. Wea. Rev., 139, 224246, https://doi.org/10.1175/2010MWR3336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., and M. R. Kumjian, 2018: Bulk-density representations of branched planar ice crystals: Errors in the polarimetric radar variables. J. Appl. Meteor. Climatol., 57, 333346, https://doi.org/10.1175/JAMC-D-17-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, V. A., D. Moisseev, and A. von Lerber, 2016: How dual-polarization radar observations can be used to verify model representation of secondary ice. J. Geophys. Res. Atmos., 121, 10 95410 970, https://doi.org/10.1002/2016JD025381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sisterson, D. L., R. A. Peppler, T. S. Cress, P. J. Lamb, and D. D. Turner, 2016: The ARM Southern Great Plains (SGP) site. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0004.1.

    • Crossref
    • Export Citation
  • Sulia, K. J., and M. R. Kumjian, 2017a: Simulated polarimetric fields of ice vapor growth using the adaptive habit model. Part I: Large-eddy simulations. Mon. Wea. Rev., 145, 22812302, https://doi.org/10.1175/MWR-D-16-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sulia, K. J., and M. R. Kumjian, 2017b: Simulated polarimetric fields of ice vapor growth using the adaptive habit model. Part II: A case study from the FROST experiment. Mon. Wea. Rev., 145, 23032323, https://doi.org/10.1175/MWR-D-16-0062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., S. Laroche, and I. Zawadzki, 2005: A microphysical bulk formulation based on scaling normalization of the particle size distribution. Part I: Description. J. Atmos. Sci., 62, 42064221, https://doi.org/10.1175/JAS3620.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., G. J. Huang, V. N. Bringi, W. L. Randeu, and M. Schönhuber, 2007: Drop shapes, model comparisons, and calculations of polarimetric radar parameters in rain. J. Atmos. Oceanic Technol., 24, 10191032, https://doi.org/10.1175/JTECH2051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., V. N. Bringi, M. Szakáll, S. K. Mitra, K. V. Beard, and S. Borrmann, 2009: Drop shapes and axis ratio distributions: comparison between 2D video disdrometer and wind-tunnel measurements. J. Atmos. Oceanic Technol., 26, 14271432, https://doi.org/10.1175/2009JTECHA1244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., A. Kruger, and W. F. Krajewski, 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteor., 40, 20832097, https://doi.org/10.1175/1520-0450(2001)040<2083:CODSDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 17891807, https://doi.org/10.1175/MWR2898.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41, 16481661, https://doi.org/10.1175/1520-0469(1984)041<1648:FFTSOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., R. Evaristo, S. Trömel, P. Saavedra, C. Simmer, and A. Ryzhkov, 2016: Radar observation of evaporation and implications for quantitative precipitation and cooling rate estimation. J. Atmos. Oceanic Technol., 33, 17791792, https://doi.org/10.1175/JTECH-D-15-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, https://doi.org/10.1175/BAMS-D-12-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 715 178 15
PDF Downloads 581 124 19