Dual-Polarized Radar Coverage in Terminal Airspaces and Its Effect on Interpretation of Winter Weather Signatures: Current Capabilities and Future Recommendations

Heather Dawn Reeves NOAA/OAR/National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Heather Dawn Reeves in
Current site
Google Scholar
PubMed
Close
and
Jacqueline Waters National Weather Center Research Experience for Undergraduates, Norman, Oklahoma, and University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Jacqueline Waters in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This is a feasibility study on the use of dual-polarized radars to infer icing in terminal airspaces (TASs) of commercial airports. The amount and quality of radar coverage in each TAS is quantified as a function of its location, traffic, and vulnerability to icing. No airport has 100% of the TAS covered, but most high-traffic or high-icing airports have comparatively good coverage (between 70% and 90%). A common occurrence during icing is anomalous propagation as 79% of events had an inversion within the TAS. This leads to overestimates in the elevations of icing layers and can cause significant ground-clutter contamination, which can overwhelm the echo produced by precipitation. The effects of beam broadening were also considered. Typical dendrite growth and melting layers can only be resolved in part of the TAS part of the time, or not at all, as these layers are often shallower than the radar beam. Because most airports have coverage from multiple radars, use of a three-dimensional mosaic was investigated. This allows for an increase in the TAS coverage (generally between 5% and 15%) and partly mitigates some of the resolution issues, but the maxima within individual layers are somewhat reduced in the interpolation process. A series of recommendations is made to address the concerns raised by this investigation. These include using only icing tops (not bottoms) to identify areas of icing, use of data mining to retrieve precipitation echo in the presence of ground clutter, and including the beamwidth in radar mosaics.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Heather Dawn Reeves, heather.reeves@noaa.gov

Abstract

This is a feasibility study on the use of dual-polarized radars to infer icing in terminal airspaces (TASs) of commercial airports. The amount and quality of radar coverage in each TAS is quantified as a function of its location, traffic, and vulnerability to icing. No airport has 100% of the TAS covered, but most high-traffic or high-icing airports have comparatively good coverage (between 70% and 90%). A common occurrence during icing is anomalous propagation as 79% of events had an inversion within the TAS. This leads to overestimates in the elevations of icing layers and can cause significant ground-clutter contamination, which can overwhelm the echo produced by precipitation. The effects of beam broadening were also considered. Typical dendrite growth and melting layers can only be resolved in part of the TAS part of the time, or not at all, as these layers are often shallower than the radar beam. Because most airports have coverage from multiple radars, use of a three-dimensional mosaic was investigated. This allows for an increase in the TAS coverage (generally between 5% and 15%) and partly mitigates some of the resolution issues, but the maxima within individual layers are somewhat reduced in the interpolation process. A series of recommendations is made to address the concerns raised by this investigation. These include using only icing tops (not bottoms) to identify areas of icing, use of data mining to retrieve precipitation echo in the presence of ground clutter, and including the beamwidth in radar mosaics.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Heather Dawn Reeves, heather.reeves@noaa.gov
Save
  • Auer, A. H., 1974: The rain versus snow threshold temperatures. Weatherwise, 27, 67, https://doi.org/10.1080/00431672.1974.9931684.

  • Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, https://doi.org/10.1175/2009JAS2883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechini, R., L. Baldini, R. Cremonini, and E. Gorgucci, 2008: Differential reflectivity calibration for operational radars. J. Atmos. Oceanic Technol., 25, 15421555, https://doi.org/10.1175/2008JTECHA1037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernstein, B. C., 2000: Regional and local influences on freezing drizzle, freezing rain, and ice pellet events. Wea. Forecasting, 15, 485508, https://doi.org/10.1175/1520-0434(2000)015<0485:RALIOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernstein, B. C., T. Omeron, F. McDonough, and M. K. Polotovich, 1997: The relationship between aircraft icing and synoptic-scale weather conditions. Wea. Forecasting, 12, 742762, https://doi.org/10.1175/1520-0434(1997)012<0742:TRBAIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, B., G. Thompson, R. Bruintjes, R. Bullock, and T. Kane, 1997: Intercomparison of in-flight icing algorithms. Part II: Statistical verification results. Wea. Forecasting, 12, 890914, https://doi.org/10.1175/1520-0434(1997)012<0890:IOIFIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, E. A. Brandes, and T. J. Schuur, 2010: Polarimetric radar rain estimation through retrieval of drop size distribution using a Bayesian approach. J. Appl. Meteor. Climatol., 49, 973990, https://doi.org/10.1175/2009JAMC2227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, and M. Xue, 2013: A variational approach for retrieving raindrop size distribution from polarimetric radar measurements in the presence of attenuation. J. Appl. Meteor. Climatol., 52, 169185, https://doi.org/10.1175/JAMC-D-12-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 2003: Urban modification of freezing-rain events. J. Appl. Meteor., 42, 863870, https://doi.org/10.1175/1520-0450(2003)042<0863:UMOFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., 2010: OEP terminal and CONUS weather radar coverage gap identification analysis for NextGen. MIT Lincoln Laboratory Project Rep. ATC-369, 93 pp., https://www.ll.mit.edu/sites/default/files/publication/doc/2018-09/Cho_2010_ATC-369_WW-20740.pdf.

  • Chrisman, J. N., 2009: Automated Volume Scan Evaluation and Termination (AVSET): A simple technique to achieve faster volume scan updates. 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., P4.4, https://ams.confex.com/ams/pdfpapers/155324.pdf.

  • Cober, S. G., and G. A. Isaac, 2012: Characterization of aircraft icing environments with supercooled large drops for application to commercial aircraft certification. J. Appl. Meteor., 51, 265284, https://doi.org/10.1175/JAMC-D-11-022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cortinas, J. V., Jr., 2000: A climatology of freezing rain in the Great Lakes region of North America. Mon. Wea. Rev., 128, 35743588, https://doi.org/10.1175/1520-0493(2001)129<3574:ACOFRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cortinas, J. V., Jr., B. C. Bernstein, C. C. Robbins, and J. W. Strapp, 2004: An analysis of freezing rain, freezing drizzle, and ice pellets across the United States and Canada: 1976–1990. Wea. Forecasting, 19, 377390, https://doi.org/10.1175/1520-0434(2004)019<0377:AAOFRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, R. W., and R. E. Stewart, 1995: Precipitation type characteristics at the surface in winter storms. Cold Reg. Sci. Technol., 23, 215229, https://doi.org/10.1016/0165-232X(94)00014-O.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2008: Temperature and pressure dependence of the rain-snow phase transition over land and ocean. Geophys. Res. Lett., 35, L12802, https://doi.org/10.1029/2008GL033456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiVito, S., and J. T. Riley, 2017: An overview of the Federal Aviation Administration (FAA) terminal area icing weather information for NextGen (TAIWIN) project. 18th Conf. on Aviation, Range, and Aerospace Meteorology, Seattle, WA, Amer. Meteor. Soc., 7.1, https://ams.confex.com/ams/97Annual/webprogram/Paper314380.html.

  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Ellrod, G. P., and A. A. Bailey, 2007: Assessment of aircraft icing potential and maximum icing altitude from geostationary meteorological satellite data. Wea. Forecasting, 22, 160174, https://doi.org/10.1175/WAF984.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., H. Grams, D. Apps, and H. Reeves, 2015: Verifying forecast precipitation type with mPING. Wea. Forecasting, 30, 656667, https://doi.org/10.1175/WAF-D-14-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Federal Aviation Administration, 2015: Airplane and engine certification requirements in supercooled large drop, mixed phase, and ice crystal icing conditions; final rule. Parts 25 and 33, Aeronautics and Space, U.S. Code of Federal Regulations, National Archives and Records Administration, 34 pp., https://www.govinfo.gov/content/pkg/FR-2014-11-04/pdf/2014-25789.pdf.

  • Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, P. H. Kaye, E. Hirst, and R. Greenaway, 2004: Simultaneous radar and aircraft observations of mixed-phase cloud at the 100 m scale. Quart. J. Roy. Meteor. Soc., 130, 18771904, https://doi.org/10.1256/qj.03.102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., and A. V. Ryzhkov, 2003: The quality of rainfall estimation with the polarimetric WSR-88D radar as a function of range. 31st Int. Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 5B.5, https://ams.confex.com/ams/pdfpapers/64220.pdf.

  • Giangrande, S. E., A. V. Ryzhkov, and J. Krause, 2005: Automatic detection of the melting layer with a polarimetric prototype of the WSR-88D radar. 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 11R.2, https://ams.confex.com/ams/pdfpapers/95894.pdf.

  • Hallowell, R. G., M. F. Donovan, D. J. Smalley, and B. J. Bennett, 2013: Icing hazard detection with NEXRAD IHL. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 263, https://ams.confex.com/ams/36Radar/webprogram/Manuscript/Paper228656/Hallowell_36RADAR_AMS.pdf.

  • Hanesiak, J. M., and R. E. Stewart, 1995: The mesoscale and microscale structure of a severe ice pellet storm. Mon. Wea. Rev., 123, 31443162, https://doi.org/10.1175/1520-0493(1995)123<3144:TMAMSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudak, D., B. Currie, P. Rodreguez, S. G. Cober, I. Zawadzki, G. A. Isaac, and M. Wolde, 2002: Cloud phase detection in winter stratiform clouds using polarimetric Doppler radar. Proc. Second European Conf. on Radar Meteorology, Delft, Netherlands, Conernicus GmbH, 90–94.

  • Ice, R. L., G. T. McGehee, R. Rhoton, D. Saxion, D. A. Warde, R. G. Guenther, D. Sirmans, and D. Rachel, 2005: Radar Operations Center (ROC): Evaluation of new signal processing techniques for the WSR-88D. 21st Int. Conf. on Interactive Information Processing Systems for Meteorology, Oceanography, and Hydrology, San Diego, CA, Amer. Meteor. Soc., P1.4, https://ams.confex.com/ams/pdfpapers/85859.pdf.

  • Kienzle, S. W., 2008: A new temperature based method to separate rain and snow. Hydrol. Processes, 22, 50675085, https://doi.org/10.1002/hyp.7131.

  • Kumjian, M. R., 2013a: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013b: Principles and applications of dual-polarization weather radar. Part II: Warm and cold season applications. J. Oper. Meteor., 1, 243264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, H. D. Reeves, and T. J. Schuur, 2013: A dual-polarization radar signature of hydrometeor refreezing in winter storms. J. Appl. Meteor. Climatol., 52, 25492566, https://doi.org/10.1175/JAMC-D-12-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, K. Hondl, G. J. Stumpf, and A. Witt, 2006: A real-time, three-dimensional, rapidly updating, heterogeneous radar merger technique for reflectivity, velocity, and derived products. Wea. Forecasting, 21, 802823, https://doi.org/10.1175/WAF942.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landolt, S. D., A. J. Schwartz, A. Gaydos, and S. DiVito, 2017: Impacts of the implementation of the Automated Surface Observing Station (ASOS) on the reports of precipitation type in airport terminal areas around the United States. 18th Conf. on Aviation, Range, and Aerospace Meteorology, Seattle, WA, Amer. Meteor. Soc., 8.4, https://ams.confex.com/ams/97Annual/webprogram/Paper313277.html.

  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterization in an explicit cloud model. J. Appl. Meteor., 31, 708721, https://doi.org/10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Motoyama, H., 1990: Simulation of seasonal snow cover based on air temperature and precipitation. J. Appl. Meteor., 29, 11041110, https://doi.org/10.1175/1520-0450(1990)029<1104:SOSSBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 1998: Automated Surface Observing System (ASOS) user’s guide. National Oceanic and Atmospheric Administration, 67 pp., https://www.weather.gov/media/asos/aum-toc.pdf.

  • Park, H.-S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, https://doi.org/10.1175/2008WAF2222205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and T. P. Wright, 2015: Revisiting ice nucleation from precipitation samples. Geophys. Res. Lett., 42, 87588766, https://doi.org/10.1002/2015GL065733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., S. Göke, R. M. Rauber, and L. DiGirolamo, 2010: Discrimination of mixed- versus ice-phase clouds using dual-polarized radar with application to detection of aircraft icing regions. J. Appl. Meteor. Climatol., 49, 920936, https://doi.org/10.1175/2009JAMC2267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., and B. C. Bernstein, 1995: Production and depletion of supercooled liquid water in a Colorado winter storm. J. Appl. Meteor., 34, 26312648, https://doi.org/10.1175/1520-0450(1995)034<2631:PADOSL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radar Operations Center, 2015: WSR-88D volume coverage patterns improvement initiatives. NOAA, 8 pp., https://www.roc.noaa.gov/WSR88D/PublicDocs/NewTechnology/New_VCP_Paradigm_Public_Oct_2015.pdf.

  • Rauber, R. M., L. S. Olthoff, and M. K. Ramamurthy, 2000: The relative importance of warm rain and melting processes in freezing precipitation events. J. Appl. Meteor., 39, 11851195, https://doi.org/10.1175/1520-0450(2000)039<1185:TRIOWR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., L. S. Olthoff, M. K. Ramamurthy, and K. E. Kunkel, 2001: Further investigation of a physically based, nondimensional parameter for discriminating between locations of freezing rain and ice pellets. Wea. Forecasting, 16, 185191, https://doi.org/10.1175/1520-0434(2001)016<0185:FIOAPB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., 2016: The uncertainty of precipitation-type observations and its effect on the validation of forecast precipitation type. Wea. Forecasting, 31, 19611971, https://doi.org/10.1175/WAF-D-16-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., K. L. Elmore, A. Ryzhkov, T. Schuur, and J. Krause, 2014: Source of uncertainty in precipitation-type forecasting. Wea. Forecasting, 29, 936953, https://doi.org/10.1175/WAF-D-14-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., A. V. Ryzhkov, and J. Krause, 2016: Discrimination between winter precipitation types based on spectral-bin microphysical modeling. J. Appl. Meteor. Climatol., 55, 17471761, https://doi.org/10.1175/JAMC-D-16-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robbins, C. C., and J. V. Cortinas Jr., 2002: Local and synoptic environments associated with freezing rain in the contiguous United States. Wea. Forecasting, 17, 4765, https://doi.org/10.1175/1520-0434(2002)017<0047:LASEAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rohrer, M. D., 1989: Determination of the transition air temperature from snow and rain and intensity of precipitation. IAHS/WMO/ETH Int. Workshop of Precipitation Measurement, IAHS/WMO/ETH, St. Moritz, Switzerland, 475–482.

  • Ryzhkov, A. V., 2007: The impact of beam broadening on the quality of radar polarimetric data. J. Atmos. Oceanic Technol., 24, 729744, https://doi.org/10.1175/JTECH2003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., D. S. Zrnić, J. C. Hubbert, V. N. Bringi, J. Vivekanandan, and E. A. Brandes, 2002: Polarimetric radar observations and interpretation of co-cross-polar correlation coefficients. J. Atmos. Oceanic Technol., 19, 340354, https://doi.org/10.1175/1520-0426-19.3.340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, V. M. Melnikov, and T. J. Schuur, 2005a: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22, 11381155, https://doi.org/10.1175/JTECH1772.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, S. Giangrande, and D. S. Zrnić, 2005b: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, https://doi.org/10.1175/BAMS-86-6-809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., P. Zhang, H. Reeves, M. Kumjian, T. Tschallener, S. Trömel, and C. Simmer, 2016: Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Oceanic Technol., 33, 551562, https://doi.org/10.1175/JTECH-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serke, D., S. Ellis, J. Hubbert, D. Albo, C. Johnston, C. Coy, D. Adriaanson, and M. Politovich, 2013: In-flight icing hazard detection with dual and single-polarimetric moments from operational NEXRADs. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 15A.4, https://ams.confex.com/ams/36Radar/webprogram/Manuscript/Paper228592/AMSRAD_2013_extabs_v1%20%281%29.pdf.

  • Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. L., Jr., P. Minnis, C. Fleeger, D. Spangenberg, R. Palikonda, and L. Nguyen, 2012: Determining the flight icing threat to aircraft with single-layer cloud parameters derived from operational satellite data. J. Appl. Meteor. Climatol., 51, 17941810, https://doi.org/10.1175/JAMC-D-12-057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tafferner, A., T. Hauf, C. Leifeld, T. Hafner, H. Leykauf, and U. Voigt, 2003: ADWICE: Advanced Diagnosis and Warning System for Aircraft Icing Environments. Wea. Forecasting, 18, 184203, https://doi.org/10.1175/1520-0434(2003)018<0184:AADAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, L., J. Zhang, C. Langston, J. Krause, K. Howard, and V. Lakshmanan, 2014: A physically based precipitation–nonprecipitation radar echo classifier using polarimetric and environmental data in a real-time national system. Wea. Forecasting, 29, 11061119, https://doi.org/10.1175/WAF-D-13-00072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thériault, J. M., R. E. Stewart, and W. Henson, 2010: On the dependence of winter precipitation types and temperature, precipitation rate, and associated features. J. Appl. Meteor. Climatol., 49, 14291442, https://doi.org/10.1175/2010JAMC2321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, E. J., S. A. Rutledge, B. Dolan, V. Chandrasekar, and B.-L. Cheong, 2014: A dual-polarized radar hydrometeor classification algorithm for winter precipitation. J. Atmos. Oceanic Technol., 31, 14571481, https://doi.org/10.1175/JTECH-D-13-00119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VanDenBroeke, M. S., D. M. Tobin, and M. R. Kumjian, 2016: Polarimetric radar observations of precipitation type and rate from the 2–3 March 2014 winter storm in Oklahoma. Wea. Forecasting, 31, 11791196, https://doi.org/10.1175/WAF-D-16-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolde, M., D. Hudak, B. Currie, S. G. Cober, P. Rodriguez, I. Zawadzki, G. A. Isaac, and D. Marcotte, 2003: Radar signatures of winter clouds from aircraft in-situ data and ground-based radar observations. 31st Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 13.3, https://ams.confex.com/ams/pdfpapers/64348.pdf.

  • Yang, Z. L., R. E. Dickinson, A. Robock, and K. Y. Vinnikov, 1997: Validation of the snow submodel of the biosphere–atmosphere transfer scheme with Russian snow cover and meteorological observational data. J. Climate, 10, 353373, https://doi.org/10.1175/1520-0442(1997)010<0353:VOTSSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshikawa, E., V. Chandrasekar, and T. Matsuda, 2014: Raindrop size distribution (DSD) retrieval for X-band dual-polarization radar. J. Atmos. Oceanic Technol., 31, 387403, https://doi.org/10.1175/JTECH-D-12-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 385 77 6
PDF Downloads 410 47 3