Reconstructing the Drizzle Mode of the Raindrop Size Distribution Using Double-Moment Normalization

Timothy H. Raupach Environmental Remote Sensing Laboratory, School of Architecture, Civil, and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Search for other papers by Timothy H. Raupach in
Current site
Google Scholar
PubMed
Close
,
Merhala Thurai Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by Merhala Thurai in
Current site
Google Scholar
PubMed
Close
,
V. N. Bringi Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by V. N. Bringi in
Current site
Google Scholar
PubMed
Close
, and
Alexis Berne Environmental Remote Sensing Laboratory, School of Architecture, Civil, and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Search for other papers by Alexis Berne in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Commonly used disdrometers tend not to accurately measure concentrations of very small drops in the raindrop size distribution (DSD), either through truncation of the DSD at the small-drop end or because of large uncertainties on these measurements. Recent studies have shown that, as a result of these inaccuracies, many if not most ground-based disdrometers do not capture the “drizzle mode” of precipitation, which consists of large concentrations of small drops and is often separated from the main part of the DSD by a shoulder region. We present a technique for reconstructing the drizzle mode of the DSD from “incomplete” measurements in which the drizzle mode is not present. Two statistical moments of the DSD that are well measured by standard disdrometers are identified and used with a double-moment normalized DSD function that describes the DSD shape. A model representing the double-moment normalized DSD is trained using measurements of DSD spectra that contain the drizzle mode obtained using collocated Meteorological Particle Spectrometer and 2D video disdrometer instruments. The best-fitting model is shown to depend on temporal resolution. The result is a method to estimate, from truncated or uncertain measurements of the DSD, a more complete DSD that includes the drizzle mode. The technique reduces bias on low-order moments of the DSD that influence important bulk variables such as the total drop concentration and mass-weighted mean drop diameter. The reconstruction is flexible and often produces better rain-rate estimations than a previous DSD correction routine, particularly for light rain.

Current affiliation: Institute of Geography, and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexis Berne, alexis.berne@epfl.ch

Abstract

Commonly used disdrometers tend not to accurately measure concentrations of very small drops in the raindrop size distribution (DSD), either through truncation of the DSD at the small-drop end or because of large uncertainties on these measurements. Recent studies have shown that, as a result of these inaccuracies, many if not most ground-based disdrometers do not capture the “drizzle mode” of precipitation, which consists of large concentrations of small drops and is often separated from the main part of the DSD by a shoulder region. We present a technique for reconstructing the drizzle mode of the DSD from “incomplete” measurements in which the drizzle mode is not present. Two statistical moments of the DSD that are well measured by standard disdrometers are identified and used with a double-moment normalized DSD function that describes the DSD shape. A model representing the double-moment normalized DSD is trained using measurements of DSD spectra that contain the drizzle mode obtained using collocated Meteorological Particle Spectrometer and 2D video disdrometer instruments. The best-fitting model is shown to depend on temporal resolution. The result is a method to estimate, from truncated or uncertain measurements of the DSD, a more complete DSD that includes the drizzle mode. The technique reduces bias on low-order moments of the DSD that influence important bulk variables such as the total drop concentration and mass-weighted mean drop diameter. The reconstruction is flexible and often produces better rain-rate estimations than a previous DSD correction routine, particularly for light rain.

Current affiliation: Institute of Geography, and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexis Berne, alexis.berne@epfl.ch
Save
  • Abel, S. J., and I. A. Boutle, 2012: An improved representation of the raindrop size distribution for single-moment microphysics schemes. Quart. J. Roy. Meteor. Soc., 138, 21512162, https://doi.org/10.1002/qj.1949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amoroso, L., 1925: Ricerche intorno alla curva dei redditi. Ann. Mat. Pura Appl., 2, 123159, https://doi.org/10.1007/BF02409935.

  • Auf der Maur, A. N., 2001: Statistical tools for drop size distributions: Moments and generalized gamma. J. Atmos. Sci., 58, 407418, https://doi.org/10.1175/1520-0469(2001)058<0407:STFDSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, https://doi.org/10.1175/MWR-D-10-05013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., G. Kok, W. Dawson, D. O’Connor, and R. Newton, 2002: A new groundbased precipitation spectrometer: The meteorological particle sensor (MPS). 11th Conf. on Cloud Physics, Ogden, UT, Amer. Meteor. Soc., 8.6, https://ams.confex.com/ams/pdfpapers/41834.pdf.

  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851864, https://doi.org/10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1985: Simple altitude adjustments to raindrop velocities for Doppler radar analysis. J. Atmos. Oceanic Technol., 2, 468471, https://doi.org/10.1175/1520-0426(1985)002<0468:SAATRV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berne, A., and W. Krajewski, 2013: Radar for hydrology: Unfulfilled promise or unrecognized potential? Adv. Water Resour., 51, 357366, https://doi.org/10.1016/j.advwatres.2012.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. Cambridge University Press, 662 pp.

    • Crossref
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365, https://doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., M. Thurai, and D. Baumgardner, 2018: Raindrop fall velocities from an optical array probe and 2-D video disdrometer. Atmos. Meas. Tech., 11, 13771384, https://doi.org/10.5194/amt-11-1377-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bumke, K., and J. Seltmann, 2012: Analysis of measured drop size spectra over land and sea. ISRN Meteor., 2012, 296575, https://doi.org/10.5402/2012/296575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., 2003: Local random errors in tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 20, 752759, https://doi.org/10.1175/1520-0426(2003)20<752:LREITB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohard, J., and J. Pinty, 2000: A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126, 18151842, https://doi.org/10.1256/smsqj.56613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crane, R. K., 1971: Propagation phenomena affecting satellite communication systems operating in the centimeter and millimeter wavelength bands. Proc. IEEE, 59, 173188, https://doi.org/10.1109/PROC.1971.8123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delanoë, J. M. E., A. J. Heymsfield, A. Protat, A. Bansemer, and R. J. Hogan, 2014: Normalized particle size distribution for remote sensing application. J. Geophys. Res. Atmos., 119, 42044227, https://doi.org/10.1002/2013JD020700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drobinski, P., and Coauthors, 2014: HyMeX: A 10-year multidisciplinary program on the Mediterranean water cycle. Bull. Amer. Meteor. Soc., 95, 10631082, https://doi.org/10.1175/BAMS-D-12-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducrocq, V., and Coauthors, 2014: HyMeX-SOP1: The field campaign dedicated to heavy precipitation and flash flooding in the northwestern Mediterranean. Bull. Amer. Meteor. Soc., 95, 10831100, https://doi.org/10.1175/BAMS-D-12-00244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton, 2005: Parametrization of ice-particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc., 131, 19972017, https://doi.org/10.1256/qj.04.134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foote, G. B., and P. S. D. Toit, 1969: Terminal velocity of raindrops aloft. J. Appl. Meteor., 8, 249253, https://doi.org/10.1175/1520-0450(1969)008<0249:TVORA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gatlin, P. N., M. Thurai, V. N. Bringi, W. Petersen, D. Wolff, A. Tokay, L. Carey, and M. Wingo, 2015: Searching for large raindrops: A global summary of two-dimensional video disdrometer observations. J. Appl. Meteor. Climatol., 54, 10691089, https://doi.org/10.1175/JAMC-D-14-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grecu, M., W. S. Olson, S. J. Munchak, S. Ringerud, L. Liao, Z. Haddad, B. L. Kelley, and S. F. McLaughlin, 2016: The GPM combined algorithm. J. Atmos. Oceanic Technol., 33, 22252245, https://doi.org/10.1175/JTECH-D-16-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243248, https://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habib, E., W. F. Krajewski, and A. Kruger, 2001: Sampling errors of tipping-bucket rain gauge measurements. J. Hydrol. Eng., 6, 159166, https://doi.org/10.1061/(ASCE)1084-0699(2001)6:2(159).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hachani, S., B. Boudevillain, G. Delrieu, and Z. Bargaoui, 2017: Drop size distribution climatology in Cévennes-Vivarais region, France. Atmosphere, 8, https://doi.org/10.3390/atmos8120233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and T. M. Blackman, 2002: The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarization radar observations. J. Appl. Meteor., 41, 286297, https://doi.org/10.1175/1520-0450(2002)041<0286:TNTRRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaffrain, J., A. Studzinski, and A. Berne, 2011: A network of disdrometers to quantify the small-scale variability of the raindrop size distribution. Water Resour. Res., 47, W00H06, https://doi.org/10.1029/2010WR009872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., and A. B. Kostinski, 2001: What is a raindrop size distribution? Bull. Amer. Meteor. Soc., 82, 11691177, https://doi.org/10.1175/1520-0477(2001)082<1169:WIARSD>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., M. L. Larsen, and A. B. Kostinski, 2015a: Disdrometer network observations of fine scale spatial–temporal clustering in rain. J. Atmos. Sci., 72, 16481666, https://doi.org/10.1175/JAS-D-14-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., M. L. Larsen, and A. B. Kostinski, 2015b: On the variability of drop size distributions over areas. J. Atmos. Sci., 72, 13861397, https://doi.org/10.1175/JAS-D-14-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., M. L. Larsen, and A. B. Kostinski, 2016: An example of persistent microstructure in a long rain event. J. Hydrometeor., 17, 16611673, https://doi.org/10.1175/JHM-D-15-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D. B., and K. V. Beard, 1984: Oscillation energies of colliding raindrops. J. Atmos. Sci., 41, 12351241, https://doi.org/10.1175/1520-0469(1984)041<1235:OEOCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joss, J., and E. G. Gori, 1978: Shapes of raindrop size distributions. J. Appl. Meteor., 17, 10541061, https://doi.org/10.1175/1520-0450(1978)017<1054:SORSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larsen, M. L., and M. Schönhuber, 2018: Identification and characterization of an anomaly in two-dimensional video disdrometer data. Atmosphere, 9, https://doi.org/10.3390/atmos9080315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C. K., G. W. Lee, I. Zawadzki, and K.-E. Kim, 2009: A preliminary analysis of spatial variability of raindrop size distributions during stratiform rain events. J. Appl. Meteor. Climatol., 48, 270283, https://doi.org/10.1175/2008JAMC1877.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, G. W., I. Zawadzki, W. Szyrmer, D. Sempere-Torres, and R. Uijlenhoet, 2004: A general approach to double-moment normalization of drop size distributions. J. Appl. Meteor., 43, 264281, https://doi.org/10.1175/1520-0450(2004)043<0264:AGATDN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, G. W., A. W. Seed, and I. Zawadzki, 2007: Modeling the variability of drop size distributions in space and time. J. Appl. Meteor. Climatol., 46, 742756, https://doi.org/10.1175/JAM2505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leijnse, H., R. Uijlenhoet, and J. N. M. Stricker, 2007: Rainfall measurement using radio links from cellular communication networks. Water Resour. Res., 43, W03201, https://doi.org/10.1029/2006WR005631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, and A. Tokay, 2014: Uncertainties of GPM DPR rain estimates caused by DSD parameterizations. J. Appl. Meteor. Climatol., 53, 25242537, https://doi.org/10.1175/JAMC-D-14-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., and J. Joss, 2000: An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol., 17, 130139, https://doi.org/10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., R. C. Langille, and W. M. Palmer, 1947: Measurement of rainfall by radar. J. Meteor., 4, 186192, https://doi.org/10.1175/1520-0469(1947)004<0186:MORBR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., 2004: A new representation of collision-induced breakup of raindrops and its implications for the shapes of raindrop size distributions. J. Atmos. Sci., 61, 777794, https://doi.org/10.1175/1520-0469(2004)061<0777:ANROCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Messer, H., A. Zinevich, and P. Alpert, 2006: Environmental monitoring by wireless communication networks. Science, 312, 713713, https://doi.org/10.1126/science.1120034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45, 339, https://doi.org/10.1016/S0169-8095(97)00018-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miriovsky, B. J., and Coauthors, 2004: An experimental study of small-scale variability of radar reflectivity using disdrometer observations. J. Appl. Meteor., 43, 106118, https://doi.org/10.1175/1520-0450(2004)043<0106:AESOSV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nord, G., and Coauthors, 2017: A high space–time resolution dataset linking meteorological forcing and hydro-sedimentary response in a mesoscale Mediterranean catchment (Auzon) of the Ardèche region, France. Earth Syst. Sci. Data, 9, 221249, https://doi.org/10.5194/essd-9-221-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S.-G., H.-L. Kim, Y.-W. Ham, and S.-H. Jung, 2017: Comparative evaluation of the OTT PARSIVEL2 using a collocated two-dimensional video disdrometer. J. Atmos. Oceanic Technol., 34, 20592082, https://doi.org/10.1175/JTECH-D-16-0256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peel, M. C., B. L. Finlayson, and T. A. McMahon, 2007: Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 16331644, https://doi.org/10.5194/hess-11-1633-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and W. Huang, 2011: The modified gamma size distribution applied to inhomogeneous and nonspherical particles: Key relationships and conversions. J. Atmos. Sci., 68, 14601473, https://doi.org/10.1175/2011JAS3645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., A. P. Barros, and C. R. Williams, 2008: An intercomparison of model simulations and VPR estimates of the vertical structure of warm stratiform rainfall during TWP-ICE. J. Appl. Meteor. Climatol., 47, 27972815, https://doi.org/10.1175/2008JAMC1801.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 2000: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic Publishers, 954 pp.

  • Raupach, T. H., and A. Berne, 2015: Correction of raindrop size distributions measured by Parsivel disdrometers, using a two-dimensional video disdrometer as a reference. Atmos. Meas. Tech., 8, 343365, https://doi.org/10.5194/amt-8-343-2015; Corrigendum, https://doi.org/10.5194/amt-8-343-2015-corrigendum.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, T. H., and A. Berne, 2016: Small-scale variability of the raindrop size distribution and its effect on areal rainfall retrieval. J. Hydrometeor., 17, 20772104, https://doi.org/10.1175/JHM-D-15-0214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, T. H., and A. Berne, 2017a: Invariance of the double-moment normalized raindrop size distribution through 3D spatial displacement in stratiform rain. J. Appl. Meteor. Climatol., 56, 16631680, https://doi.org/10.1175/JAMC-D-16-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, T. H., and A. Berne, 2017b: Retrieval of the raindrop size distribution from polarimetric radar data using double-moment normalisation. Atmos. Meas. Tech., 10, 25732594, https://doi.org/10.5194/amt-10-2573-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and C. W. Ulbrich, 2003: Cloud microphysical properties, processes, and rainfall estimation opportunities. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, Amer. Meteor. Soc., 237–258, https://doi.org/10.1007/978-1-878220-36-3_10.

    • Crossref
    • Export Citation
  • Schleiss, M., and A. Berne, 2010: Identification of dry and rainy periods using telecommunication microwave links. IEEE Geosci. Remote Sens. Lett., 7, 611615, https://doi.org/10.1109/LGRS.2010.2043052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schönhuber, M., G. Lammer, and W. L. Randeu, 2008: The 2D-video-distrometer. Precipitation: Advances in Measurement, Estimation and Prediction, S. Michaelides, Ed., Springer, 3–31, https://doi.org/10.1007/978-3-540-77655-0_1.

    • Crossref
    • Export Citation
  • Sekhon, R. S., and R. Srivastava, 1971: Doppler radar observations of drop-size distributions in a thunderstorm. J. Atmos. Sci., 28, 983994, https://doi.org/10.1175/1520-0469(1971)028<0983:DROODS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seliga, T., and V. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 6976, https://doi.org/10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sempere-Torres, D., J. M. Porrà, and J.-D. Creutin, 1994: A general formulation for raindrop size distribution. J. Appl. Meteor., 33, 14941502, https://doi.org/10.1175/1520-0450(1994)033<1494:AGFFRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. L., and D. V. Kliche, 2005: The bias in moment estimators for parameters of drop size distribution functions: Sampling from exponential distributions. J. Appl. Meteor., 44, 11951205, https://doi.org/10.1175/JAM2258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stacy, E. W., 1962: A generalization of the gamma distribution. Ann. Math. Stat., 33, 11871192, https://doi.org/10.1214/aoms/1177704481.

  • Straub, W., K. D. Beheng, A. Seifert, J. Schlottke, and B. Weigand, 2010: Numerical investigation of collision-induced breakup of raindrops. Part II: Parameterizations of coalescence efficiencies and fragment size distributions. J. Atmos. Sci., 67, 576588, https://doi.org/10.1175/2009JAS3175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., R. Checa, and M. De Castro, 2010: An experiment to measure the spatial variability of rain drop size distribution using sixteen laser disdrometers. Geophys. Res. Lett., 37, https://doi.org/10.1029/2010GL044120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., and Coauthors, 2017: On the optimal measuring area for pointwise rainfall estimation: A dedicated experiment with 14 laser disdrometers. J. Hydrometeor., 18, 753760, https://doi.org/10.1175/JHM-D-16-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., and V. N. Bringi, 2018: Application of the generalized gamma model to represent the full rain drop size distribution spectra. J. Appl. Meteor. Climatol., 57, 11971210, https://doi.org/10.1175/jamc-d-17-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., W. Petersen, A. Tokay, C. Schultz, and P. Gatlin, 2011: Drop size distribution comparisons between Parsivel and 2-D video disdrometers. Adv. Geosci., 30, 39, https://doi.org/10.5194/adgeo-30-3-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., P. Gatlin, V. N. Bringi, W. Petersen, P. Kennedy, B. Notaroš, and L. Carey, 2017: Toward completing the raindrop size spectrum: Case studies involving 2D-video disdrometer, droplet spectrometer, and polarimetric radar measurements. J. Appl. Meteor. Climatol., 56, 877896, https://doi.org/10.1175/JAMC-D-16-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., V. Bringi, P. Gatlin, W. Petersen, and M. Wingo, 2018: Why the generalized gamma?—An answer based on measurements with meteorological particle spectrometer and 2D video disdrometer. ERAD2018: 10th European Conf. on Radar in Meteorology and Hydrology, Ede-Wageningen, Netherlands, KNMI and Wageningen University, 051, https://doi.org/10.18174/454537.

    • Crossref
    • Export Citation
  • Tokay, A., and P. G. Bashor, 2010: An experimental study of small-scale variability of raindrop size distribution. J. Appl. Meteor. Climatol., 49, 23482365, https://doi.org/10.1175/2010JAMC2269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., A. Kruger, and W. Krajewski, 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteor., 40, 20832097, https://doi.org/10.1175/1520-0450(2001)040<2083:CODSDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., W. A. Petersen, P. Gatlin, and M. Wingo, 2013: Comparison of raindrop size distribution measurements by collocated disdrometers. J. Atmos. Oceanic Technol., 30, 16721690, https://doi.org/10.1175/JTECH-D-12-00163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., D. B. Wolff, and W. A. Petersen, 2014: Evaluation of the new version of the laser-optical disdrometer, OTT Parsivel2. J. Atmos. Oceanic Technol., 31, 12761288, https://doi.org/10.1175/JTECH-D-13-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., L. P. D’Adderio, F. Porcù, D. B. Wolff, and W. A. Petersen, 2017: A field study of footprint-scale variability of raindrop size distribution. J. Hydrometeor., 18, 31653179, https://doi.org/10.1175/JHM-D-17-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., and D. Sempere Torres, 2006: Measurement and parameterization of rainfall microstructure. J. Hydrol., 328, 17, https://doi.org/10.1016/j.jhydrol.2005.11.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop-size distribution. J. Climate Appl. Meteor., 22, 17641775, https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1985: The effects of drop size distribution truncation on rainfall integral parameters and empirical relations. J. Climate Appl. Meteor., 24, 580590, https://doi.org/10.1175/1520-0450(1985)024<0580:TEODSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Dijk, A., L. Bruijnzeel, and C. Rosewell, 2002: Rainfall intensity–kinetic energy relationships: A critical literature appraisal. J. Hydrol., 261, 123, https://doi.org/10.1016/S0022-1694(02)00020-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., G. Zhang, and E. Brandes, 2004: Polarimetric radar estimators based on a constrained gamma drop size distribution model. J. Appl. Meteor., 43, 217230, https://doi.org/10.1175/1520-0450(2004)043<0217:PREBOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41, 16481661, https://doi.org/10.1175/1520-0469(1984)041<1648:FFTSOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W., and G. M. McFarquhar, 2018: Statistical theory on the functional form of cloud particle size distributions. J. Atmos. Sci., 75, 28012814, https://doi.org/10.1175/JAS-D-17-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, N., G. Delrieu, B. Boudevillain, P. Hazenberg, and R. Uijlenhoet, 2014: Unified formulation of single- and multimoment normalizations of the raindrop size distribution based on the gamma probability density function. J. Appl. Meteor. Climatol., 53, 166179, https://doi.org/10.1175/JAMC-D-12-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 991 301 37
PDF Downloads 632 191 27