Gridded Statistical Downscaling Based on Interpolation of Parameters and Predictor Locations for Summer Daily Precipitation in North China

Yonghe Liu School of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan, China

Search for other papers by Yonghe Liu in
Current site
Google Scholar
PubMed
Close
,
Jinming Feng Key Laboratory of Regional Climate-Environment Research for Temperate East Asia, Institute Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Jinming Feng in
Current site
Google Scholar
PubMed
Close
,
Zongliang Yang Key Laboratory of Regional Climate-Environment Research for Temperate East Asia, Institute Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Zongliang Yang in
Current site
Google Scholar
PubMed
Close
,
Yonghong Hu Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yonghong Hu in
Current site
Google Scholar
PubMed
Close
, and
Jianlin Li School of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan, China

Search for other papers by Jianlin Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Few statistical downscaling applications have provided gridded products that can provide downscaled values for a no-gauge area as is done by dynamical downscaling. In this study, a gridded statistical downscaling scheme is presented to downscale summer precipitation to a dense grid that covers North China. The main innovation of this scheme is interpolating the parameters of single-station models to this dense grid and assigning optimal predictor values according to an interpolated predictand–predictor distance function. This method can produce spatial dependence (spatial autocorrelation) and transmit the spatial heterogeneity of predictor values from the large-scale predictors to the downscaled outputs. Such gridded output at no-gauge stations shows performances comparable to that at the gauged stations. The area mean precipitation of the downscaled results is comparable to other products. The main value of the downscaling scheme is that it can obtain reasonable outputs for no-gauge stations.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yonghe Liu, yonghe_hpu@163.com

This article is included in the Global Precipitation Measurement (GPM) special collection.

Abstract

Few statistical downscaling applications have provided gridded products that can provide downscaled values for a no-gauge area as is done by dynamical downscaling. In this study, a gridded statistical downscaling scheme is presented to downscale summer precipitation to a dense grid that covers North China. The main innovation of this scheme is interpolating the parameters of single-station models to this dense grid and assigning optimal predictor values according to an interpolated predictand–predictor distance function. This method can produce spatial dependence (spatial autocorrelation) and transmit the spatial heterogeneity of predictor values from the large-scale predictors to the downscaled outputs. Such gridded output at no-gauge stations shows performances comparable to that at the gauged stations. The area mean precipitation of the downscaled results is comparable to other products. The main value of the downscaling scheme is that it can obtain reasonable outputs for no-gauge stations.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yonghe Liu, yonghe_hpu@163.com

This article is included in the Global Precipitation Measurement (GPM) special collection.

Save
  • Balsamo, G., and Coauthors, 2015: ERA-Interim/Land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci., 19, 389407, https://doi.org/10.5194/hess-19-389-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J., J. Feng, and Y. Wang, 2015: Dynamical downscaling simulation and future projection of precipitation over China. J. Geophys. Res., 120, 82278243, https://doi.org/10.1002/2015JD023275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castro, C. L., R. A. Pielke, and G. Leoncini, 2005: Dynamical downscaling: Assessment of value retained and added using the Regional Atmospheric Modeling System (RAMS). J. Geophys. Res., 110, D05108, https://doi.org/10.1029/2004JD004721.

    • Search Google Scholar
    • Export Citation
  • Charles, S. P., B. C. Bates, and J. P. Hughes, 1999: A spatiotemporal model for downscaling precipitation occurrence and amounts. J. Geophys. Res., 104, 31 65731 669, https://doi.org/10.1029/1999JD900119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., 2000: A monthly circulation climatology for Sweden and its application to a winter temperature case study. Int. J. Climatol., 20, 10671076, https://doi.org/10.1002/1097-0088(200008)20:10<1067::AID-JOC528>3.0.CO;2-Q.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deidda, R., 2000: Rainfall downscaling in a space-time multifractal framework. Water Resour. Res., 36, 17791794, https://doi.org/10.1029/2000WR900038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., and J. Shukla, 2009: Artificial skill due to predictor screening. J. Climate, 22, 331345, https://doi.org/10.1175/2008JCLI2414.1.

  • Fan, L., Z. Yan, D. Chen, and C. Fu, 2015: Comparison between two statistical downscaling methods for summer daily rainfall in Chongqing, China. Int. J. Climatol., 35, 37813797, https://doi.org/10.1002/joc.4246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frost, A. J., and Coauthors, 2011: A comparison of multi-site daily rainfall downscaling techniques under Australian conditions. J. Hydrol., 408, 118, https://doi.org/10.1016/j.jhydrol.2011.06.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, G., S. P. Charles, and S. Kirshner, 2013a: Daily rainfall projections from general circulation models with a downscaling nonhomogeneous hidden Markov model (NHMM) for south-eastern Australia. Hydrol. Processes, 27, 36633673, https://doi.org/10.1002/hyp.9483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, G., S. P. Charles, F. H. S. Chiew, J. Teng, H. Zheng, A. J. Frost, W. Liu, and S. Kirshner, 2013b: Modelling runoff with statistically downscaled daily site, gridded and catchment rainfall series. J. Hydrol., 492, 254265, https://doi.org/10.1016/j.jhydrol.2013.03.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hammami, D., T. S. Lee, T. B. M. J. Ouarda, and J. Lee, 2012: Predictor selection for downscaling GCM data with LASSO. J. Geophys. Res., 117, D17116, https://doi.org/10.1029/2012JD017864.

    • Search Google Scholar
    • Export Citation
  • Hughes, J. P., P. Guttorp, and S. P. Charles, 2002: A non-homogeneous hidden Markov model for precipitation occurrence. J. Roy. Stat. Soc., 48C, 1530, https://doi.org/10.1111/1467-9876.00136.

    • Search Google Scholar
    • Export Citation
  • Huth, R., J. Miksovsky, P. Stepanek, M. Belda, A. Farda, Z. Chladova, and P. Pisoft, 2015: Comparative validation of statistical and dynamical downscaling models on a dense grid in central Europe: Temperature. Theor. Appl. Climatol., 120, 533553, https://doi.org/10.1007/s00704-014-1190-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khalili, M., V. N. Van Thanh, and P. Gachon, 2013: A statistical approach to multi-site multivariate downscaling of daily extreme temperature series. Int. J. Climatol., 33, 1532, https://doi.org/10.1002/joc.3402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirchmeier-Young, M. C., D. J. Lorenz, and D. J. Vimont, 2016: Extreme event verification for probabilistic downscaling. J. Appl. Meteor. Climatol., 55, 24112430, https://doi.org/10.1175/JAMC-D-16-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., G. Fu, C. Liu, and S. P. Charles, 2013: A comparison of three multi-site statistical downscaling models for daily rainfall in the North China Plain. Theor. Appl. Climatol., 111, 585600, https://doi.org/10.1007/s00704-012-0692-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., J. Feng, X. Liu, and Y. Zhao, 2019: A method for deterministic statistical downscaling of daily precipitation at a monsoonal site in Eastern China. Theor. Appl. Climatol., 135, 85100, https://doi.org/10.1007/S00704-017-2356-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manzanas, R., S. Brands, D. San-Martin, A. Lucero, C. Limbo, and J. M. Gutierrez, 2015: Statistical downscaling in the tropics can be sensitive to reanalysis choice: A case study for precipitation in the Philippines. J. Climate, 28, 41714184, https://doi.org/10.1175/JCLI-D-14-00331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2013: Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue. J. Climate, 26, 21372143, https://doi.org/10.1175/JCLI-D-12-00821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2017: Towards process informed bias correction of climate change simulations. Nat. Climate Change, 7, 764773, https://doi.org/10.1038/NCLIMATE3418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nasseri, M., H. Tavakol-Davani, and B. Zahraie, 2013: Performance assessment of different data mining methods in statistical downscaling of daily precipitation. J. Hydrol., 492, 114, https://doi.org/10.1016/j.jhydrol.2013.04.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, C., W. Zhou, S. K. Fong, and K. C. Leong, 2015: Two approaches for statistical prediction of non-Gaussian climate extremes: A case study of Macao hot extremes during 1912–2012. J. Climate, 28, 623636, https://doi.org/10.1175/JCLI-D-14-00159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • San-Martin, D., R. Manzanas, S. Brands, S. Herrera, and J. M. Gutierrez, 2017: Reassessing model uncertainty for regional projections of precipitation with an ensemble of statistical downscaling methods. J. Climate, 30, 203–223, https://doi.org/10.1175/JCLI-D-16-0366.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, https://doi.org/10.1175/JCLI3790.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, Y., and B. P. Mohanty, 2013: Development of a deterministic downscaling algorithm for remote sensing soil moisture footprint using soil and vegetation classifications. Water Resour. Res., 49, 62086228, https://doi.org/10.1002/wrcr.20495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sunyer, M. A., and Coauthors, 2015a: Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe. Hydrol. Earth Syst. Sci., 19, 18271847, https://doi.org/10.5194/hess-19-1827-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sunyer, M. A., I. B. Gregersen, D. Rosbjerg, H. Madsen, J. Luchner, and K. Arnbjerg-Nielsen, 2015b: Comparison of different statistical downscaling methods to estimate changes in hourly extreme precipitation using RCM projections from ENSEMBLES. Int. J. Climatol., 35, 25282539, https://doi.org/10.1002/joc.4138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tareghian, R., and P. F. Rasmussen, 2013: Statistical downscaling of precipitation using quantile regression. J. Hydrol., 487, 122135, https://doi.org/10.1016/j.jhydrol.2013.02.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolika, K., P. Maheras, M. Vafiadis, H. A. Flocasc, and A. Arseni-Papadimitriou, 2007: Simulation of seasonal precipitation and raindays over Greece: A statistical downscaling technique based on artificial neural networks (ANNs). Int. J. Climatol., 27, 861881, https://doi.org/10.1002/joc.1442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Werner, A. T., and A. J. Cannon, 2016: Hydrologic extremes—An intercomparison of multiple gridded statistical downscaling methods. Hydrol. Earth Syst. Sci., 20, 14831508, https://doi.org/10.5194/hess-20-1483-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, G., and Coauthors, 2015: Spatial downscaling of TRMM precipitation product using a combined multifractal and regression approach: Demonstration for South China. Water, 7, 30833102, https://doi.org/10.3390/w7063083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, C., R. E. Chandler, V. S. Isham, and H. S. Wheater, 2005: Spatial-temporal rainfall simulation using generalized linear models. Water Resour. Res., 41, W11415, https://doi.org/10.1029/2004WR003739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., P. Shi, V. P. Singh, K. Fan, and J. Huang, 2017: Spatial downscaling of TRMM-based precipitation data using vegetative response in Xinjiang, China. Int. J. Climatol., 37, 38953909, https://doi.org/10.1002/joc.4964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., and X. Yan, 2015: A new statistical precipitation downscaling method with Bayesian model averaging: A case study in China. Climate Dyn., 45, 25412555, https://doi.org/10.1007/s00382-015-2491-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, X., and R. W. Katz, 2008: Mixture model of generalized chain-dependent processes and its application to simulation of interannual variability of daily rainfall. J. Hydrol., 349, 191199, https://doi.org/10.1016/j.jhydrol.2007.10.061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, X., X. Qiu, Y. Zeng, W. Ren, B. Tao, H. Pan, T. Gao, and J. Gao, 2018: High-resolution precipitation downscaling in mountainous areas over China: Development and application of a statistical mapping approach. Int. J. Climatol., 38, 7793, https://doi.org/10.1002/joc.5162.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 980 357 22
PDF Downloads 751 180 19