Abstract
Few statistical downscaling applications have provided gridded products that can provide downscaled values for a no-gauge area as is done by dynamical downscaling. In this study, a gridded statistical downscaling scheme is presented to downscale summer precipitation to a dense grid that covers North China. The main innovation of this scheme is interpolating the parameters of single-station models to this dense grid and assigning optimal predictor values according to an interpolated predictand–predictor distance function. This method can produce spatial dependence (spatial autocorrelation) and transmit the spatial heterogeneity of predictor values from the large-scale predictors to the downscaled outputs. Such gridded output at no-gauge stations shows performances comparable to that at the gauged stations. The area mean precipitation of the downscaled results is comparable to other products. The main value of the downscaling scheme is that it can obtain reasonable outputs for no-gauge stations.
© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
This article is included in the Global Precipitation Measurement (GPM) special collection.