How to Express Hail Intensity—Modeling the Hailstone Size Distribution

Juergen Grieser Risk Management Solutions, London, United Kingdom

Search for other papers by Juergen Grieser in
Current site
Google Scholar
PubMed
Close
and
Marc Hill Risk Management Solutions, London, United Kingdom

Search for other papers by Marc Hill in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The local intensity of hail can be expressed by a variety of variables, such as hail kinetic energy, maximum hailstone size, and radar reflectivity–driven algorithms. All of these variables are connected by the hailstone size distribution. In the United States, the Community Collaborative Rain, Hail and Snow Network (CoCoRaHS) provides more than 37 000 observations that describe the diameter of the smallest, average, and largest hailstone; duration of hail; and overall hailstone number density. We use these data and the assumption of an exponential hailstone size distribution aloft to model the rate of hailstones hitting the ground per unit area, time, and hailstone size bin during the passage of a hailstorm. We found that total hail kinetic energy is proportional to the diameter of the largest hailstone to a power of less than 2. To validate these results, we compared them with hailpad observations of the largest hailstone diameters and hail kinetic energies in southwestern France. As an example application, we calculate the probability mass function for the largest hailstone observed by a hailpad given the largest hailstone occurring in its vicinity. We use this model at Risk Management Solutions, Ltd. (RMS), to calculate the vulnerability of subjects at risk as a function of the diameter of the largest hailstone.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Juergen Grieser, juergen.grieser@rms.com

Abstract

The local intensity of hail can be expressed by a variety of variables, such as hail kinetic energy, maximum hailstone size, and radar reflectivity–driven algorithms. All of these variables are connected by the hailstone size distribution. In the United States, the Community Collaborative Rain, Hail and Snow Network (CoCoRaHS) provides more than 37 000 observations that describe the diameter of the smallest, average, and largest hailstone; duration of hail; and overall hailstone number density. We use these data and the assumption of an exponential hailstone size distribution aloft to model the rate of hailstones hitting the ground per unit area, time, and hailstone size bin during the passage of a hailstorm. We found that total hail kinetic energy is proportional to the diameter of the largest hailstone to a power of less than 2. To validate these results, we compared them with hailpad observations of the largest hailstone diameters and hail kinetic energies in southwestern France. As an example application, we calculate the probability mass function for the largest hailstone observed by a hailpad given the largest hailstone occurring in its vicinity. We use this model at Risk Management Solutions, Ltd. (RMS), to calculate the vulnerability of subjects at risk as a function of the diameter of the largest hailstone.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Juergen Grieser, juergen.grieser@rms.com
Save
  • Abraham, F. F., 1970: Functional dependence of drag coefficient of a sphere on Reynolds number. Phys. Fluids, 13, 21942195, https://doi.org/10.1063/1.1693218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., and M. K. Tippett, 2015: The characteristics of United States hail reports: 1955–2014. Electron. J. Severe Storms Meteor., 10 (3), http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/149.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. Tippett, Y. Kaheil, A. Sobel, C. Lepore, S. Nong, and A. Muehlbauer, 2017: An extreme value model for United States hail size. Mon. Wea. Rev., 145, 45014519, https://doi.org/10.1175/MWR-D-17-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allianz, 2009: Die Münchner Hagelkatastrophe 1984 (the Munich hail catastrophe 1984). Allianz Deutschland AG Tech. Rep., https://www.allianz.com/de/presse/news/unternehmen/geschichte/news-2009-07-06.html.

  • Auer, A. H., 1972: The distribution of graupel and hail with size. Mon. Wea. Rev., 100, 325328, https://doi.org/10.1175/1520-0493-100-05-0325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aydin, K., T. A. Seliga, and V. Balaji, 1986: Remote sensing of hail with a dual-linear polarization radar. J. Climate Appl. Meteor., 25, 14751484, https://doi.org/10.1175/1520-0450(1986)025<1475:RSOHWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, A. C., 1950: Empirical formulae for the terminal velocity of water drops falling through the atmosphere. Quart. J. Roy. Meteor. Soc., 76, 302311, https://doi.org/10.1002/qj.49707632905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blair, S. F., and J. W. Leighton, 2012: Creating high-resolution hail datasets using social media and post-storm ground surveys. J. Oper. Meteor., 13 (3), 3245.

    • Search Google Scholar
    • Export Citation
  • Blair, S. F., and Coauthors, 2017: High-resolution hail observations: Implications for NWS warning operations. Wea. Forecasting, 32, 11011119, https://doi.org/10.1175/WAF-D-16-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böhm, H. P., 1989: A general equation for terminal fall speed of solid hydrometeors. J. Atmos. Sci., 46, 24192427, https://doi.org/10.1175/1520-0469(1989)046<2419:AGEFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, T. M., W. H. Pogorzelski, and I. M. Giammanco, 2015: Evaluating hail damage using property insurance claims data. Wea. Climate Soc., 7, 197210, https://doi.org/10.1175/WCAS-D-15-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K., and J. Beimers, 1967: The oblateness of large hailstones. J. Appl. Meteor., 6, 10761081, https://doi.org/10.1175/1520-0450(1967)006<1075:TOOLH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carte, A., and R. Kidder, 1966: Transvaal hailstones. Quart. J. Roy. Meteor. Soc., 92, 382391, https://doi.org/10.1002/qj.49709239307.

  • Cheng, L., and M. English, 1983: A relationship between hailstone concentration and size. J. Atmos. Sci., 40, 204213, https://doi.org/10.1175/1520-0469(1983)040<0204:ARBHCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., M. English, and R. Wong, 1985: Hailstone size distributions and their relationship to storm thermodynamics. J. Climate Appl. Meteor., 24, 10591067, https://doi.org/10.1175/1520-0450(1985)024<1059:HSDATR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cocks, S. B., J. Zhang, S. M. Martinaitis, Y. Qi, B. Kaney, and K. Howard, 2017: MRMS QPE performance east of the Rockies during the 2014 warm season. J. Hydrometeor., 18, 761775, https://doi.org/10.1175/JHM-D-16-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Detwiler, A., J. Scannell, D. Kliche, and S. Williams, 2012: Creating the long-term T-28 instrumented research aircraft data archive. Bull. Amer. Meteor. Soc., 93, 18171820, https://doi.org/10.1175/BAMS-D-11-00066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doesken, N., and H. Reges, 2011: Creating a volunteer observing network. WMO Bull., 60, 4851, https://public.wmo.int/en/bulletin/creating-volunteer-observing-network.

    • Search Google Scholar
    • Export Citation
  • Dotzek, N., P. Groenemeijer, B. Feuerstein, and A. M. Holzer, 2009: Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD. Atmos. Res., 93, 575586, https://doi.org/10.1016/j.atmosres.2008.10.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, R. H., 1963: Size distributions of Alberta hail samples. McGill University Stormy Weather Research Group Sci. Rep. MW-36, 55–70.

  • Federer, B., and A. Waldvogel, 1975: Hail and raindrop size distribution from a Swiss multicell storm. J. Appl. Meteor., 14, 9197, https://doi.org/10.1175/1520-0450(1975)014<0091:HARSDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Federer, B., and A. Waldvogel, 1978: Time-resolved hailstone analyses and radar structure of Swiss storms. Quart. J. Roy. Meteor. Soc., 104, 6990, https://doi.org/10.1002/qj.49710443906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrier, B., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, https://doi.org/10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, A. G. Detwiler, and J. M. Wilkinson, 2019: Normalized hail particle size distributions from the T-28 storm-penetrating aircraft. J. Atmos. Meteor. Climatol., 58, 231245, https://doi.org/10.1175/JAMC-D-18-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraile, R., C. Berthet, J. Dessens, and J. L. Sanchez, 2003: Return periods of severe hailfalls computed from hailpad data. Atmos. Res., 67–68, 189202, https://doi.org/10.1016/S0169-8095(03)00051-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GdV, 2014: Naturgefahrenreport 2014 (Natural hazards report 2014). Gesamtverband der Deutschen Versicherungswirtschaft Tech. Rep., 52 pp., https://www.gdv.de/resource/blob/20462/320abd98a62289a46d628c59b234f982/publikation—naturgefahrenreport-2014-data.pdf.

  • Giammanco, I. M., T. M. Brown, M. R. Kumjian, and A. J. Heymsfield, 2014: Observations of hailstone sizes and shapes from the IBHS Hail Measurement Program: 2012–2014. 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 16B.2, https://ams.confex.com/ams/27SLS/webprogram/Paper255294.html.

    • Search Google Scholar
    • Export Citation
  • Gunturi, P., and M. K. Tippett, 2017: Managing severe thunderstorm risk: Impact of ENSO on US tornado and hail frequencies. Willis Re Tech. Rep., 5 pp.

  • Heymsfield, A., and R. Wright, 2014: Graupel and hail terminal velocities: Does a “supercritical” Reynolds number apply? J. Atmos. Sci., 71, 33923403, https://doi.org/10.1175/JAS-D-14-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., I. M. Giammanco, and R. Wright, 2014: Terminal velocities and kinetic energies of natural hailstones. Geophys. Res. Lett., 41, 86668672, https://doi.org/10.1002/2014GL062324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., M. Szakall, A. Jost, I. Giammanco, and R. Wright, 2018: A comprehensive observational study of graupel and hail terminal velocity, mass flux, and kinetic energy. J. Atmos. Sci., 75, 38613885, https://doi.org/10.1175/JAS-D-18-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohl, R., H.-H. Schiesser, and D. Aller, 2002: Hailfall: The relationship between radar-derived hail kinetic energy and hail damage to buildings. Atmos. Res., 63, 177207, https://doi.org/10.1016/S0169-8095(02)00059-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Z., M. R. Kumjian, R. S. Schrom, I. Giammanco, T. Brown-Giammanco, H. Estes, R. Maiden, and A. J. Heymsfield, 2019: Comparisons of electromagnetic scattering properties of real hailstones and spheroids. J. Appl. Meteor. Climatol., 58, 93112, https://doi.org/10.1175/JAMC-D-17-0344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. N., and P. L. Smith Jr., 1980: Meteorological instrumentation system on the T-28 thunderstorm research aircraft. Bull. Amer. Meteor. Soc., 61, 972979, https://doi.org/10.1175/1520-0477(1980)061<0972:MISOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalina, E. A., K. Friedrich, S. M. Ellis, and D. W. Burgess, 2014: Comparison of disdrometer and X-band mobile radar observations in convective precipitation. Mon. Wea. Rev., 142, 24142435, https://doi.org/10.1175/MWR-D-14-00039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, P., 2018: Supercell thunderstorm near Brush, Colorado: 29 July 2018. CSU-CHILL National Radar Facility Research Rep., http://www.chill.colostate.edu/w/DPWX/Supercell_thunderstorm_near_Brush,_Colorado:_29_July_2018.

  • Kennedy, P., and F. Junyent, 2017: Selected dual wavelength observations of hail: 12 June 2017. CSU-CHILL National Radar Facility Research Rep., http://www.chill.colostate.edu/w/DPWX/Selected_dual_wavelength_observations_of_hail:_12_June_2017.

  • Knight, C. A., and N. C. Knight, 1970: The falling behavior of hailstones. J. Atmos. Sci., 27, 672681, https://doi.org/10.1175/1520-0469(1970)027<0672:TFBOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, N., and A. Heymsfield, 1983: Measurement and interpretation of hailstone density and terminal velocity. J. Atmos. Sci., 40, 15101516, https://doi.org/10.1175/1520-0469(1983)040<1510:MAIOHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 20422060, https://doi.org/10.1175/JAS-D-11-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, J. E., N. J. Doesken, T. C. Kasparis, and D. W. Sharp, 2012: Analysis of the March 30, 2011 hail event at shuttle launch pad 39A. NASA Rep., 9 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120003001.pdf.

  • List, R., U. W. Rentsch, A. C. Byram, and E. Lozowski, 1973: On the aerodynamics of spheroidal hailstone models. J. Atmos. Sci., 30, 653661, https://doi.org/10.1175/1520-0469(1973)030<0653:OTAOSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loftus, A. M., W. R. Cotton, and G. G. Carrio, 2014: A triple-moment hail bulk microphysics scheme. Part I: Description and initial evaluation. Atmos. Res., 149, 3557, https://doi.org/10.1016/j.atmosres.2014.05.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, A. B., R. J. Matson, and E. L. Crow, 1980: The hailpad: Materials, data reduction and calibration. J. Appl. Meteor., 19, 13001313, https://doi.org/10.1175/1520-0450(1980)019<1300:THMDRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. K. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, B. J., 1971: The Physics of Clouds. 2nd ed. Oxford University Press, 671 pp.

  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, https://doi.org/10.1175/JAS3534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 2000: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt., 39, 10261031, https://doi.org/10.1364/AO.39.001026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monfredo, W., 2011: Investigation into the record hailstone on 23 July 2010 at Vivian, South Dakota, USA. Weather, 66 (8), 216221, https://doi.org/10.1002/wea.734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musil, D. J., S. A. Christopher, R. A. Deola, and P. L. Smith, 1991: Some interior observations of southeastern Montana hailstorms. J. Appl. Meteor., 30, 15961612, https://doi.org/10.1175/1520-0450(1991)030<1596:SIOOSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., 2018: Evaluating multi-radar, multi-sensor products for surface hail-fall diagnosis. Electron. J. Severe Storms Meteor., 13 (1), http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/163.

    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., T. M. Smith, K. L. Manross, K. A. Scharfenberg, A. Witt, A. G. Kolodziej, and J. J. Gourley, 2009: The severe hazards analysis and verification experiment. Bull. Amer. Meteor. Soc., 90, 15191530, https://doi.org/10.1175/2009BAMS2815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, B. A., D. J. Musil, and P. L. Smith, 1991: Computerized reduction of airborne foil impactor data. J. Atmos. Oceanic Technol., 8, 691696, https://doi.org/10.1175/1520-0426(1991)008<0691:CROAFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. Klett, 1996: Microphysics of Clouds and Precipitation. 2nd ed. Springer, 954 pp.

  • Reges, H. W., N. Doesken, J. Turner, N. Newman, A. Bergantino, and Z. Schwalbe, 2016: CoCoRaHS: The evolution and accomplishments of a volunteer rain gauge network. Bull. Amer. Meteor. Soc., 97, 18311846, https://doi.org/10.1175/BAMS-D-14-00213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and P. Zhang, 2013: Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteor. Climatol., 52, 28712886, https://doi.org/10.1175/JAMC-D-13-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sander, J., J. Eichner, E. Faust, and M. Steuer, 2013: Rising variability in thunderstorm-related U.S. losses as a reflection of changes in large-scale thunderstorm forcing. Wea. Climate Soc., 5, 317331, https://doi.org/10.1175/WCAS-D-12-00023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., and R. Edwards, 1999: The SPC Tornado/Severe Thunderstorm Database. 11th Conf. on Applied Climatology, Dallas, TX, Amer. Meteor. Soc., 215–220.

    • Search Google Scholar
    • Export Citation
  • Seino, H., 1980: On the characteristics of hail size distribution related to crop damage. J. Agric. Meteor., 36 (2), 8188, https://doi.org/10.2480/agrmet.36.81.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiotsuki, Y., 1975: An equation for size distribution of precipitation elements based on the normal distribution of liquid water content. J. Meteor. Soc. Japan, 53, 7586, https://doi.org/10.2151/jmsj1965.53.1_75.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. L., and A. Waldvogel, 1989: On determinations of maximum hailstone sizes from hailpad observations. J. Appl. Meteor., 28, 7176, https://doi.org/10.1175/1520-0450(1989)028<0071:ODOMHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., H. B. Bluestein, and G. Zhang, 2010: Attenuation correction and hydrometeor classification of high-resolution, X-band, dual-polarized mobile radar measurements in severe convective storms. J. Atmos. Oceanic Technol., 27, 19792001, https://doi.org/10.1175/2010JTECHA1356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spahn, J. F., and P. L. Smith, 1976: Some characteristics of hailstone size distributions inside hailstorms. 17th Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 187191.

    • Search Google Scholar
    • Export Citation
  • Swiss RE, 2017: Natural catastrophes and man-made disasters in 2016: A year of widespread damages. Swiss RE Rep. 2/2017, 42 pp., http://media.swissre.com/documents/sigma2_2017_en.pdf.

  • Ulbrich, C. W., and D. Atlas, 1982: Hail parameter relations: A comprehensive digest. J. Appl. Meteor., 21, 2243, https://doi.org/10.1175/1520-0450(1982)021<0022:HPRACD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., D. S. Zrnic, S. M. Ellis, R. Oye, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, https://doi.org/10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., W. Schmid, and B. Federer, 1978: The kinetic energy of hailfalls. Part I: Hailstone spectra. J. Appl. Meteor., 17, 515520, https://doi.org/10.1175/1520-0450(1978)017<0515:TKEOHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterman, P. C., 1969: Scattering by dielectric obstacles. Alta Freq., 38, 348352.

  • Weickmann, H., 1953: Observational data on the formation of precipitation in cumulonimbus clouds. Thunderstorm Electricity, University of Chicago Press, 66–138.

    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 513518, https://doi.org/10.1175/1520-0434(1998)013<0513:ETPOWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 1988: Manual on codes. Vol. I.1, World Meteorological Organization Publ. 306, 466 pp., http://www.wmo.int/pages/prog/www/WMOCodes/WMO306_vI1/Publications/2016update/WMO306_vI1_en_2011UP2016.pdf.

  • Wong, R. K. W., N. Chidambaran, L. Cheng, and M. English, 1987: The sampling variations of hailstone size distributions. J. Appl. Meteor., 27, 254260, https://doi.org/10.1175/1520-0450(1988)027<0254:TSVOHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, R., G. Eng, and K. A. Browning, 1967: Wind tunnel tests of simulated spherical hailstones with variable roughness. J. Atmos. Sci., 24, 5862, https://doi.org/10.1175/1520-0469(1967)024<0058:WTTOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2644 860 76
PDF Downloads 2526 877 78