The Observed Structure and Precipitation Characteristics of Southeast Atlantic Stratocumulus from Airborne Radar during ORACLES 2016–17

Andrew M. Dzambo University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Andrew M. Dzambo in
Current site
Google Scholar
PubMed
Close
,
Tristan L’Ecuyer University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Tristan L’Ecuyer in
Current site
Google Scholar
PubMed
Close
,
Ousmane O. Sy Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Ousmane O. Sy in
Current site
Google Scholar
PubMed
Close
, and
Simone Tanelli Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Simone Tanelli in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

During the Observations of Aerosols above Clouds and Their Interactions (ORACLES) 2016 and 2017 field experiments, the Third Generation Advanced Precipitation and Cloud Radar (APR-3) flew aboard the NASA P-3 aircraft taking over 10 million profiles of stratocumulus clouds in the southeast Atlantic Ocean. This study documents cloud structure, precipitation frequency and intensity, and atmospheric stability for each flight during both field experiments. A larger cloud fraction was estimated for 2016, likely due to a larger estimated inversion strength (EIS) in the experiment area (between 6 and 10 K) compared to 2017 where EIS was on average 4–6 K lower. We used an optimal estimation retrieval to derive precipitation rates for all measurable clouds during both experiments. Over 30% of clouds observed during the 2016 experiment exhibited precipitation reaching the surface, but retrieved drizzle rates were below 0.01 mm h−1 in all but 40% of these profiles. This is in sharp contrast to the 2017 campaign where over 53% of precipitating profiles had rainfall rates larger than 0.01 mm h−1. The differences in cloud and rain fractions between the two years are most likely due to differences in the sampling environments; however, enough variations in cloud, virga, and rain fraction exist for similar environmental conditions such that additional analysis of cloud and aerosol interactions—specifically their effect on precipitation processes—needs further exploration. The extensive APR-3 sampling of drizzling stratocumulus under similar thermodynamic conditions provides a rich dataset for examining the influence of biomass burning aerosols on cloud fraction, morphology, and precipitation characteristics in this climatically important region.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew M. Dzambo, adzambo@wisc.edu

Abstract

During the Observations of Aerosols above Clouds and Their Interactions (ORACLES) 2016 and 2017 field experiments, the Third Generation Advanced Precipitation and Cloud Radar (APR-3) flew aboard the NASA P-3 aircraft taking over 10 million profiles of stratocumulus clouds in the southeast Atlantic Ocean. This study documents cloud structure, precipitation frequency and intensity, and atmospheric stability for each flight during both field experiments. A larger cloud fraction was estimated for 2016, likely due to a larger estimated inversion strength (EIS) in the experiment area (between 6 and 10 K) compared to 2017 where EIS was on average 4–6 K lower. We used an optimal estimation retrieval to derive precipitation rates for all measurable clouds during both experiments. Over 30% of clouds observed during the 2016 experiment exhibited precipitation reaching the surface, but retrieved drizzle rates were below 0.01 mm h−1 in all but 40% of these profiles. This is in sharp contrast to the 2017 campaign where over 53% of precipitating profiles had rainfall rates larger than 0.01 mm h−1. The differences in cloud and rain fractions between the two years are most likely due to differences in the sampling environments; however, enough variations in cloud, virga, and rain fraction exist for similar environmental conditions such that additional analysis of cloud and aerosol interactions—specifically their effect on precipitation processes—needs further exploration. The extensive APR-3 sampling of drizzling stratocumulus under similar thermodynamic conditions provides a rich dataset for examining the influence of biomass burning aerosols on cloud fraction, morphology, and precipitation characteristics in this climatically important region.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew M. Dzambo, adzambo@wisc.edu
Save
  • Abel, S. J., and B. J. Shipway, 2007: A comparison of cloud-resolving model simulations of trade wind cumulus with aircraft observations taken during RICO. Quart. J. Roy. Meteor. Soc., 133, 781794, https://doi.org/10.1002/qj.55.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abel, S. J., and I. A. Boutle, 2012: An improved representation of the raindrop size distribution for single-moment microphysics schemes. Quart. J. Roy. Meteor. Soc., 138, 21512162, https://doi.org/10.1002/qj.1949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adebiyi, A. A., P. Zuidema, and S. J. Abel, 2015: The convolution of dynamics and moisture with the presence of shortwave absorbing aerosols over the southeast Atlantic. J. Climate, 28, 19972024, https://doi.org/10.1175/JCLI-D-14-00352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271231, https://doi.org/10.1126/science.245.4923.1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., C. S. Bretherton, D. Johnson, W. H. Scubert, and A. S. Frisch, 1995: The Atlantic Stratocumulus Transition Experiment—ASTEX. Bull. Amer. Meteor. Soc., 76, 889904, https://doi.org/10.1175/1520-0477(1995)076<0889:TASTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., and Coauthors, 2019: Cloud System Evolution in the Trades (CSET): Following the evolution of boundary layer cloud systems with the NSF–NCAR GV. Bull. Amer. Meteor. Soc., 100, 93121, https://doi.org/10.1175/BAMS-D-17-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, P., Y. Wang, V. Kujala, and R. Pincus, 1995: Precipitation in stratocumulus clouds: Observational and modeling results. J. Atmos. Sci., 52, 23292352, https://doi.org/10.1175/1520-0469(1995)052<2329:PISCOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battaglia, A., and C. Simmer, 2008: How does multiple scattering affect the spaceborne W-band radar measurements at ranges close to and crossing the sea-surface range? IEEE Trans. Geosci. Remote Sens., 46, 16441651, https://doi.org/10.1109/TGRS.2008.916085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennartz, R., 2007: Global assessment of marine boundary layer cloud droplet number concentration from satellite. J. Geophys. Res., 112, D02201, https://doi.org/10.1029/2006JD007547.

    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L’Ecuyer, and C. Kummerow, 2006: rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45, 434454, https://doi.org/10.1175/JAM2331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L’Ecuyer, and J. M. Haynes, 2010: The distribution of rainfall over oceans from spaceborne radars. J. Appl. Meteor. Climatol., 49, 535543, https://doi.org/10.1175/2009JAMC2330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., R. Wood, R. C. George, D. Leon, G. Allen, and X. Zheng, 2010: Southeast Pacific stratocumulus clouds, precipitation and boundary layer structure sampled along 20° S during VOCALS-REx. Atmos. Chem. Phys., 10, 10 63910 654, https://doi.org/10.5194/acp-10-10639-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., M. A. Miller, B. A. Albrecht, T. P. Ackerman, J. Verlinde, D. M. Babb, R. M. Peters, and W. J. Syrett, 1995: An evaluation of a 94-GHz radar for remote sensing of cloud properties. J. Atmos. Oceanic Technol., 12, 201229, https://doi.org/10.1175/1520-0426(1995)012<0201:AEOAGR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comstock, K. K., R. Wood, S. E. Yuter, and C. S. Bretherton, 2004: Reflectivity and rain rate in and below drizzling stratocumulus. Quart. J. Roy. Meteor. Soc., 130, 28912918, https://doi.org/10.1256/qj.03.187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, S. K., D. S. McDougal, D. A. Randall, and R. A. Schiffer, 1987: FIRE—The First ISCCP Regional Experiment. Bull. Amer. Meteor. Soc., 68, 114118, https://doi.org/10.1175/1520-0477(1987)068<0114:FFIRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diamond, M. S., and Coauthors, 2018: Time-dependent entrainment of smoke presents an observational challenge for assessing aerosol–cloud interactions over the southeast Atlantic Ocean. Atmos. Chem. Phys., 18, 14 62314 636, https://doi.org/10.5194/acp-18-14623-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellis, T. D., T. L’Ecuyer, J. M. Haynes, and G. L. Stephens, 2009: How often does it rain over the global oceans? The perspective from CloudSat. Geophys. Res. Lett., 36, L03815, https://doi.org/10.1029/2008GL036728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., 1993: Parameterization of the evaporation of rainfall for use in general circulation models. J. Atmos. Sci., 50, 34543467, https://doi.org/10.1175/1520-0469(1993)050<3454:POTEOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H., 1996: Microphysics of marine stratocumulus clouds with two drizzle modes. J. Atmos. Sci., 53, 16491662, https://doi.org/10.1175/1520-0469(1996)053<1649:MOMSCW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Atmos. Sci., 6, 243248, https://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., T. L’Ecuyer, G. L. Stephens, S. D. Miller, C. Mitrescu, N. B. Wood, and S. Tanelli, 2009: Rainfall retrievals over the ocean with spaceborne high-frequency cloud radar. J. Geophys. Res., 114, D00A22, https://doi.org/10.1029/2008JD009973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitschfeld, W., and J. Bordan, 1954: Errors inherent in the radar measurement of rainfall at attenuating wavelengths. J. Meteor., 11, 5867, https://doi.org/10.1175/1520-0469(1954)011<0058:EIITRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and A. Battaglia, 2008: Fast lidar and radar multiple-scattering models. Part II: Wide-angle scattering using the time-dependent two-stream approximation. J. Atmos. Sci., 65, 36363651, https://doi.org/10.1175/2008JAS2643.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., and Coauthors, 2017: The Olympic Mountains Experiment (OLYMPEX). Bull. Amer. Meteor. Soc., 98, 21672188, https://doi.org/10.1175/BAMS-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, X., K. Suzuki, H. Guo, D. Goto, T. Ogura, T. Koshiro, and J. Mülmenstädt, 2017: A multimodel study on warm precipitation biases in global models compared to satellite observations. J. Geophys. Res. Atmos., 122, 11 80611 824, https://doi.org/10.1002/2017JD027310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., T. L’Ecuyer, A. Pendergrass, H. Chepfer, R. Guzman, and V. Yettella, 2018: Scale-aware and definition-aware evaluation of modeled near-surface precipitation frequency using CloudSat observations. J. Geophys. Res. Atmos., 123, 42944309, https://doi.org/10.1002/2017JD028213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and G. L. Stephens, 2002: An estimation-based precipitation retrieval algorithm for attenuating radars. J. Appl. Meteor., 41, 272285, https://doi.org/10.1175/1520-0450(2002)041<0272:AEBPRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., W. Berg, J. Haynes, M. Lebsock, and T. Takemura, 2009: Global observations of aerosol impacts on precipitation occurrence in warm maritime clouds. J. Geophys. Res., 114, D09211, https://doi.org/10.1029/2008JD011273.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., 2011: Level 2C RAIN-PROFILE product process description and interface control document, algorithm version 0.0. CloudSat Data Processing Center, 114 pp., http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-RAIN-PROFILE-PDICD.P_R04.20110620.pdf.

  • Lebsock, M. D., and T. S. L’Ecuyer, 2011: The retrieval of warm rain from CloudSat. J. Geophys. Res., 116, D20209, https://doi.org/10.1029/2011JD016076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., G. L. Stephens, and C. Kummerow, 2008: Multisensor satellite observations of aerosol effects on warm clouds. J. Geophys. Res., 113, D15205, https://doi.org/10.1029/2008JD009876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., and Coauthors, 1988: Dynamics and Chemistry of Marine Stratocumulus (DYCOMS) experiment. Bull. Amer. Meteor. Soc., 69, 10581067, https://doi.org/10.1175/1520-0477(1988)069<1058:DACOMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, D., Q. Liu, and L. Zhou, 2015: Underestimation of oceanic warm cloud occurrences by the Cloud Profiling Radar aboard CloudSat. J. Meteor. Res., 29, 576593, https://doi.org/10.1007/s13351-015-5027-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchand, R., G. G. Mace, T. Ackerman, and G. Stephens, 2008: Hydrometeor detection using Cloudsat—An Earth-orbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519533, https://doi.org/10.1175/2007JTECHA1006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. K. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., T. Uttal, and D. A. Hazen, 2004: Evaluation of radar reflectivity–based estimates of water content in stratiform marine clouds. J. Appl. Meteor., 43, 405419, https://doi.org/10.1175/1520-0450(2004)043<0405:EORREO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matus, A., T. S. L’Ecuyer, J. E. Kay, J.-F. Lamarque, and C. Hannay, 2015: The role of clouds in modulating global aerosol direct radiative effects in spaceborne active observations and the Community Earth System Model. J. Climate, 28, 29863003, https://doi.org/10.1175/JCLI-D-14-00426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, K., S. Platnick, and Z. Zhang, 2015: Simultaneously inferring above-cloud absorbing aerosol optical thickness and underlying liquid phase cloud optical and microphysical properties using MODIS. J. Geophys. Res. Atos., 120, 55245547,https://doi.org/10.1002/2015JD023128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitrescu, C., S. D. Miller, J. M. Haynes, T. L’Ecuyer, and F. J. Turk, 2010: CloudSat Precipitation Profiling Algorithm—Model description. J. Appl. Meteor. Climatol., 49, 9911003, https://doi.org/10.1175/2009JAMC2181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohrmann, J., R. Wood, J. McGibbon, R. Eastman, and E. Luke, 2018: Drivers of seasonal variability in marine boundary layer aerosol number concentration investigated using a steady state approach. J. Geophys. Res. Atmos., 123, 10971112, https://doi.org/10.1002/2017JD027443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peers, F., and Coauthors, 2016: Comparison of aerosol optical properties above clouds between POLDER and AeroCom models over the South East Atlantic Ocean during the fire season. Geophys. Res. Lett., 43, 39914000, https://doi.org/10.1002/2016GL068222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2007: Rain in Shallow Cumulus over the Ocean: The RICO campaign. Bull. Amer. Meteor. Soc., 88, 19121928, https://doi.org/10.1175/BAMS-88-12-1912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salio, P., M. P. Hobouchian, Y. G. Skabar, and D. Vila, 2015: Evaluation of high-resolution satellite precipitation estimates over southern South America using a dense rain gauge network. Atmos. Res., 163, 146161, https://doi.org/10.1016/j.atmosres.2014.11.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sayer, A. M., N. C. Hsu, C. Bettenhausen, J. Lee, J. Redemann, B. Schmid, and Y. Shinozuka, 2016: Extending “Deep Blue” aerosol retrieval coverage to cases of absorbing aerosols above clouds: Sensitivity analysis and first case studies. J. Geophys. Res. Atmos., 121, 48304854, https://doi.org/10.1002/2015JD024729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorooshian, A., G. Feingold, M. D. Lebsock, H. Jiang, and G. L. Stephens, 2009: On the precipitation susceptibility of clouds to aerosol perturbations. Geophys. Res. Lett., 36, L13803, https://doi.org/10.1029/2009GL038993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stenz, R., X. Dong, B. Xi, Z. Feng, and R. J. Kuligowski, 2016: Improving satellite quantitative precipitation estimation using GOES-retrieved cloud optical depth. J. Hydrometeor., 17, 557570, https://doi.org/10.1175/JHM-D-15-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, https://doi.org/10.1029/2010JD014532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607, https://doi.org/10.1038/nature08281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., W. R. Cotton, G. Feingold, and C. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci., 55, 36163638, https://doi.org/10.1175/1520-0469(1998)055<3616:LESOSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: Dynamics and Chemistry of Marine Stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc., 84, 579594, https://doi.org/10.1175/BAMS-84-5-579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanelli, S., S. L. Durden, E. Im, K. S. Pak, D. G. Reinke, P. Partain, J. M. Haynes, and R. T. Marchand, 2008: CloudSat’s cloud profiling radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573, https://doi.org/10.1109/TGRS.2008.2002030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Res., 47 (1–2), 123138, https://doi.org/10.3354/cr00953.

  • vanZanten, M. C., and Coauthors, 2011: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst., 3, M06001, https://doi.org/10.1029/2011MS000056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., G. Feingold, R. Wood, and J. Kazil, 2010: Modelling microphysical and meteorological controls on precipitation and cloud cellular structures in southeast Pacific stratocumulus. Atmos. Chem. Phys., 10, 63476362, https://doi.org/10.5194/acp-10-6347-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, S. G., R. M. Eastman, and C. J. Hahn, 2007: A survey of changes in cloud cover and cloud types over land from surface observations, 1971–96. J. Climate, 20, 717738, https://doi.org/10.1175/JCLI4031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2006: Rate of loss of cloud droplets by coalescence in warm clouds. J. Geophys. Res., 111, D21205, https://doi.org/10.1029/2006JD007553.

  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, https://doi.org/10.1175/JCLI3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., C. S. Bretherton, and D. L. Hartmann, 2002: Diurnal cycle of liquid water path over the subtropical and tropical oceans. Geophys. Res. Lett., 29, 2092, https://doi.org/10.1029/2002GL015371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2011: The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations. Atmos. Chem. Phys., 11, 627654, https://doi.org/10.5194/acp-11-627-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2015: Clouds, aerosols, and precipitation in the marine boundary layer: An ARM Mobile Facility deployment. Bull. Amer. Meteor. Soc., 96, 419440, https://doi.org/10.1175/BAMS-D-13-00180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2018: Ultraclean layers and optically thin clouds in the stratocumulus-to-cumulus transition. Part I: Observations. J. Atmos. Sci., 75, 16311652, https://doi.org/10.1175/JAS-D-17-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, H., G. Feingold, and B. Stevens, 2008: Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. J. Atmos. Sci., 65, 392406, https://doi.org/10.1175/2007JAS2428.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., G. Feingold, J. Kazil, and A. McComiskey, 2015: Stratocumulus to cumulus transition in the presence of elevated smoke layers. Geophys. Res. Lett., 42, 10 47810 485, https://doi.org/10.1002/2015GL066544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., D. V. Michelangeli, and P. A. Taylor, 2004: Numerical studies of aerosol scavenging by low-level, warm stratiform clouds and precipitation. Atmos. Environ., 38, 46534665, https://doi.org/10.1016/j.atmosenv.2004.05.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuidema, P., J. Redemann, J. Haywood, R. Wood, S. Piketh, M. Hipondoka, and P. Formenti, 2016: Smoke and clouds above the southeast Atlantic: Upcoming field campaigns probe absorbing aerosol’s impact on climate. Bull. Amer. Meteor. Soc., 97, 11311135, https://doi.org/10.1175/BAMS-D-15-00082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 466 152 15
PDF Downloads 355 110 15