An Analysis of the Processes Affecting Rapid Near-Surface Water Vapor Increases during the Afternoon to Evening Transition in Oklahoma

W. G. Blumberg School of Meteorology, University of Oklahoma, Norman, Oklahoma
Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by W. G. Blumberg in
Current site
Google Scholar
PubMed
Close
,
D. D. Turner NOAA/Earth Systems Research Laboratory Global Sciences Division, Boulder, Colorado

Search for other papers by D. D. Turner in
Current site
Google Scholar
PubMed
Close
,
S. M. Cavallo School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by S. M. Cavallo in
Current site
Google Scholar
PubMed
Close
,
Jidong Gao NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Jidong Gao in
Current site
Google Scholar
PubMed
Close
,
J. Basara School of Meteorology, University of Oklahoma, Norman, Oklahoma
School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma

Search for other papers by J. Basara in
Current site
Google Scholar
PubMed
Close
, and
A. Shapiro School of Meteorology, University of Oklahoma, Norman, Oklahoma
Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by A. Shapiro in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study used 20 years of Oklahoma Mesonet data to investigate the changes of near-surface water vapor mixing ratio qυ during the afternoon to evening transition (AET). Similar to past studies, increases in qυ are found to occur near sunset. However, the location, magnitude, and timing of the qυ maximum occurring during the AET are shown to be dependent on the seasonal growth and harvest of vegetation across Oklahoma in the spring and summer months. Particularly, the late spring harvest of winter wheat grown in Oklahoma appears to modify the relative contribution of local and nonlocal processes on qυ. By analyzing time series of qυ during the AET, it is found that the likelihood of a presunset qυ maximum is strongly dependent upon vegetation, soil moisture, wind speed, and cloud cover. Analysis also reveals that the increase in qυ during the AET can increase the parcel conditional instability despite the surface cooling produced by loss of insolation. Next to known changes in low-level wind shear, these changes in instability and moisture demonstrate new ways the AET can modify the presence of the key ingredients relevant to explaining the climatological increase in severe convective storm hazards around sunset.

Current affiliation: NASA Goddard Space Flight Center, Greenbelt, Maryland.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Greg Blumberg, wblumberg@ou.edu

Abstract

This study used 20 years of Oklahoma Mesonet data to investigate the changes of near-surface water vapor mixing ratio qυ during the afternoon to evening transition (AET). Similar to past studies, increases in qυ are found to occur near sunset. However, the location, magnitude, and timing of the qυ maximum occurring during the AET are shown to be dependent on the seasonal growth and harvest of vegetation across Oklahoma in the spring and summer months. Particularly, the late spring harvest of winter wheat grown in Oklahoma appears to modify the relative contribution of local and nonlocal processes on qυ. By analyzing time series of qυ during the AET, it is found that the likelihood of a presunset qυ maximum is strongly dependent upon vegetation, soil moisture, wind speed, and cloud cover. Analysis also reveals that the increase in qυ during the AET can increase the parcel conditional instability despite the surface cooling produced by loss of insolation. Next to known changes in low-level wind shear, these changes in instability and moisture demonstrate new ways the AET can modify the presence of the key ingredients relevant to explaining the climatological increase in severe convective storm hazards around sunset.

Current affiliation: NASA Goddard Space Flight Center, Greenbelt, Maryland.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Greg Blumberg, wblumberg@ou.edu
Save
  • Acevedo, O. C., and D. R. Fitzjarrald, 2001: The early evening surface-layer transition: Temporal and spatial variability. J. Atmos. Sci., 58, 26502667, https://doi.org/10.1175/1520-0469(2001)058<2650:TEESLT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • American Meteorological Society, 2019: Dryline. Glossary of Meteorology, http://glossary.ametsoc.org/wiki/Dryline.

  • Arritt, R. W., T. D. Rink, M. Segal, D. P. Todey, C. A. Clark, M. J. Mitchell, and K. M. Labas, 1997: The Great Plains low-level jet during the warm season of 1993. Mon. Wea. Rev., 125, 21762192, https://doi.org/10.1175/1520-0493(1997)125<2176:TGPLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bagley, J. E., L. M. Kueppers, D. P. Billesbach, I. N. Williams, S. C. Biraud, and M. S. Torn, 2017: The influence of land cover on surface energy partitioning and evaporative fraction regimes in the U.S. southern Great Plains. J. Geophys. Res. Atmos., 122, 57935807, https://doi.org/10.1002/2017JD026740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balling, R. C., Jr., 1985: Warm season nocturnal precipitation in the great plains of the united states. J. Climate Appl. Meteor., 24, 13831387, https://doi.org/10.1175/1520-0450(1985)024<1383:WSNPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basara, J. B., and K. C. Crawford, 2002: Linear relationships between root-zone soil moisture and atmospheric processes in the planetary boundary layer. J. Geophys. Res., 107, 4274, https://doi.org/10.1029/2001JD000633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basara, J. B., and J. I. Christian, 2018: Seasonal and interannual variability of land–atmosphere coupling across the southern Great Plains of North America using the North American regional reanalysis. Int. J. Climatol., 38, 964978, https://doi.org/10.1002/joc.5223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basara, J. B., J. Christian, R. Wakefield, J. Otkin, E. Hunt, and D. Brown, 2019: The evolution, propagation, and spread of flash drought in the Central United States during 2012. Environ. Res. Lett., 14, 084025, https://doi.org/10.1088/1748-9326/ab2cc0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, https://doi.org/10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290, https://doi.org/10.1175/1520-0477-38.5.283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 2015: Severe Convective Storms and Tornadoes: Observations and Dynamics. Springer, 456 pp.

  • Bluestein, H. B., E. W. McCaul, G. P. Byrd, and G. R. Woodall, 1988: Mobile sounding observations of a tornadic storm near the dryline: The Canadian, Texas storm of 7 May 1986. Mon. Wea. Rev., 116, 17901804, https://doi.org/10.1175/1520-0493(1988)116<1790:MSOOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., E. W. McCaul, G. P. Byrd, G. R. Woodall, G. Martin, S. Keighton, and L. C. Showell, 1989: Mobile sounding observations of a thunderstorm near the dryline: The Gruver, Texas storm complex of 25 May 1987. Mon. Wea. Rev., 117, 244250, https://doi.org/10.1175/1520-0493(1989)117<0244:MSOOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., G. S. Romine, R. Rotunno, D. W. Reif, and C. C. Weiss, 2018: On the anomalous counterclockwise turning of the surface wind with time in the plains of the United States. Mon. Wea. Rev., 146, 467484, https://doi.org/10.1175/MWR-D-17-0297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonin, T., P. Chilson, B. Zielke, and E. Fedorovich, 2013: Observations of the early evening boundary-layer transition using a small unmanned aerial system. Bound.-Layer Meteor., 146, 119132, https://doi.org/10.1007/s10546-012-9760-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and H. B. Bluestein, 2008: Synoptic–Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders. Meteor. Monogr., No. 33, Amer. Meteor. Soc., 423 pp.

    • Crossref
    • Export Citation
  • Brock, F. V., K. C. Crawford, R. L. Elliott, G. W. Cuperus, S. J. Stadler, H. L. Johnson, and M. D. Eilts, 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 519, https://doi.org/10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Busse, J., and K. Knupp, 2012: Observed characteristics of the afternoon–evening boundary layer transition based on sodar and surface data. J. Appl. Meteor. Climatol., 51, 571582, https://doi.org/10.1175/2011JAMC2607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., J. Adegoke, J. Allard, D. L. Arnold, and D. J. Travis, 2001: Summer season land cover-convective cloud associations for the Midwest U.S. “Corn Belt. Geophys. Res. Lett., 28, 16791682, https://doi.org/10.1029/2000GL012635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., D. L. Arnold, D. J. Travis, S. Curran, and J. O. Adegoke, 2008a: Synoptic circulation and land surface influences on convection in the Midwest U.S. “Corn Belt” during the summers of 1999 and 2000. Part I: Composite synoptic environments. J. Climate, 21, 33893415, https://doi.org/10.1175/2007JCLI1578.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., D. J. Travis, J. O. Adegoke, D. L. Arnold, and S. Curran, 2008b: Synoptic circulation and land surface influences on convection in the Midwest U.S. “Corn Belt” during the summers of 1999 and 2000. Part II: Role of vegetation boundaries. J. Climate, 21, 36173641, https://doi.org/10.1175/2007JCLI1584.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2015: Impacts of increasing low-level shear on supercells during the early evening transition. Mon. Wea. Rev., 143, 19451969, https://doi.org/10.1175/MWR-D-14-00328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., M. S. Lin, R. L. McAnelly, and C. J. Tremback, 1989: A composite model of mesoscale convective complexes. Mon. Wea. Rev., 117, 765783, https://doi.org/10.1175/1520-0493(1989)117<0765:ACMOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, T. M., and H. B. Bluestein, 1997: Characteristics of dryline passage during COPS-91. Mon. Wea. Rev., 125, 463477, https://doi.org/10.1175/1520-0493(1997)125<0463:CODPDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson C.R., and E. F. Wood, 2011: Observed land–atmosphere coupling from satellite remote sensing and reanalysis. J. Hydrometeor., 12, 1221–1254, https://doi.org/10.1175/2011JHM1380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitzjarrald, D. R., and G. G. Lala, 1989: Hudson Valley fog environments. J. Appl. Meteor., 28, 13031328, https://doi.org/10.1175/1520-0450(1989)028<1303:HVFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanagan, P. X., J. B. Basara, J. Otkin, and B. G. Illston, 2017: The effect of the dryline and convective initiation on drought evolution over Oklahoma during the 2011 drought. Adv. Meteor., 2017, 8430743, https://doi.org/10.1155/2017/8430743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., A. D. Rapp, and S. M. Quiring, 2015a: Does afternoon precipitation occur preferentially over dry or wet soils in Oklahoma? J. Hydrometeor., 16, 874888, https://doi.org/10.1175/JHM-D-14-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., S. M. Quiring, O. W. Frauenfeld, and A. D. Rapp, 2015b: Synoptic conditions related to land–atmosphere interactions and unorganized convection in Oklahoma. J. Geophys. Res. Atmos., 120, 11 51911 535, https://doi.org/10.1002/2015JD023975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., A. D. Rapp, S. M. Quiring, and J. Blake, 2015c: Soil moisture–precipitation coupling: Observations from the Oklahoma Mesonet and underlying physical mechanisms. Hydrol. Earth Syst. Sci., 19, 36173631, https://doi.org/10.5194/hess-19-3617-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T., 1970: The Lubbock tornado: A study of suction spots. Weatherwise, 23, 161173, https://doi.org/10.1080/00431672.1970.9932888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, L., 1994: Oklahoma Mesonet (300KM) (updated daily), Southern Great Plains (SGP) External Data (satellites and others) (×1). Subset used: 1 March 1994–31 August 2014, ARM Data Center, accessed 13 November 2017, https://www.arm.gov/capabilities/instruments/okm.

  • Gregory, L., 1998: Oklahoma Mesonet Soil Moisture (OKMSOIL) (updated daily), Southern Great Plains (SGP) External Data (satellites and others) (X1). Subset used: 1 March 1994–31 August 2014, ARM Data Center, accessed 13 November 2017, https://www.arm.gov/capabilities/vaps/okmsoil-124.

  • Hane, C. E., 2004: Quiescent and synoptically-active drylines: A comparison based upon case studies. Meteor. Atmos. Phys., 86, 195211, https://doi.org/10.1007/s00703-003-0026-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hane, C. E., M. E. Baldwin, H. B. Bluestein, T. M. Crawford, and R. M. Rabin, 2001: A case study of severe storm development along a dryline within a synoptically active environment. Part I: Dryline motion and an eta model forecast. Mon. Wea. Rev., 129, 21832204, https://doi.org/10.1175/1520-0493(2001)129<2183:ACSOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hane, C. E., R. M. Rabin, T. M. Crawford, H. B. Bluestein, and M. E. Baldwin, 2002: A case study of severe storm development along a dryline within a synoptically active environment. Part II: Multiple boundaries and convective initiation. Mon. Wea. Rev., 130, 900920, https://doi.org/10.1175/1520-0493(2002)130<0900:ACSOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haugland, M. J., and K. C. Crawford, 2005: The diurnal cycle of land–atmosphere interactions across Oklahoma’s winter wheat belt. Mon. Wea. Rev., 133, 120130, https://doi.org/10.1175/MWR-2842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, https://doi.org/10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19, 200205, https://doi.org/10.3402/tellusa.v19i2.9766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, J. D., 2007: Matplotlib: A 2D graphics environment. Comput. Sci. Eng., 9, 9095, https://doi.org/10.1109/MCSE.2007.55.

  • Illston, B. G., J. B. Basara, and K. C. Crawford, 2004: Seasonal to interannual variations of soil moisture measured in Oklahoma. Int. J. Climatol., 24, 18831896, https://doi.org/10.1002/joc.1077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illston, B. G., J. B. Basara, C. A. Fiebrich, K. C. Crawford, E. Hunt, D. K. Fisher, R. Elliott, and K. Humes, 2008: Mesoscale monitoring of soil moisture across a statewide network. J. Atmos. Oceanic Technol., 25, 167182, https://doi.org/10.1175/2007JTECHA993.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, Z. F., and N. M. Hitchens, 2018: Effects of soil moisture on the longitudinal dryline position in the southern Great Plains. J. Hydrometeor., 19, 273287, https://doi.org/10.1175/JHM-D-17-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, E., and Coauthors, 2001: SciPy: Open source scientific tools for Python. SciPy, http://www.scipy.org/.

  • Kim, S. J., K. Koh, K. Boyd, and D. Gorinevsky, 2009: L1-trend filtering. SIAM Rev., 51, 339360, https://doi.org/10.1137/070690274.

  • Lothon, M., and Coauthors, 2014: The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmos. Chem. Phys., 14, 10 93110 960, https://doi.org/10.5194/acp-14-10931-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loveland, T. R., J. W. Merchant, J. F. Brown, D. O. Ohlen, B. C. Reed, P. Olson, and J. Hutchinson, 1995: Seasonal land-cover regions of the United States. Ann. Assoc. Amer. Geogr., 85, 339355, https://doi.org/10.1111/j.1467-8306.1995.tb01798.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, https://doi.org/10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1983: Large-scale meteorological conditions associated with midlatitude mesoscale convective complexes. Mon. Wea. Rev., 111, 14751493, https://doi.org/10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1993: Diurnal low-level wind oscillation and storm-relative helicity. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 591–598.

    • Crossref
    • Export Citation
  • Mahrt, L., 1981: The early evening boundary layer transition. Quart. J. Roy. Meteor. Soc., 107, 329343, https://doi.org/10.1002/qj.49710745205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and D. J. Stensrud, 1998: Mean monthly diurnal cycles observed with PRE-STORM surface data. J. Climate, 11, 29953009, https://doi.org/10.1175/1520-0442(1998)011<2995:MMDCOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, R. M., Arms, S. C., Marsh, P., Bruning, E. and Leeman, J. R., 2017: MetPy: A Python Package for Meteorological Data. Unidata, Accessed 31 March 2017, https://github.com/Unidata/MetPy.

  • McPherson, R. A., and D. J. Stensrud, 2005: Influences of a winter wheat belt on the evolution of the boundary layer. Mon. Wea. Rev., 133, 21782199, https://doi.org/10.1175/MWR2968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., D. J. Stensrud, and K. C. Crawford, 2004: The Impact of Oklahoma’s winter wheat belt on the mesoscale environment. Mon. Wea. Rev., 132, 405421, https://doi.org/10.1175/1520-0493(2004)132<0405:TIOOWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., and Coauthors, 2007: Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 24, 301321, https://doi.org/10.1175/JTECH1976.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mead, C. M., and R. L. Thompson, 2011: Environmental characteristics associated with nocturnal significant-tornado events in the central and southern Great Plains. Electron. J. Severe Storms Meteor., 6 (6), http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/84.

    • Search Google Scholar
    • Export Citation
  • Means, L. L., 1944: The nocturnal maximum occurrence of thunderstorms in the midwestern states. Master’s thesis, Dept. of Physics, University of Chicago, 38 pp.

  • Means, L. L., 1954: A study of the mean southerly wind maximum in low levels associated with a period of summer precipitation in the Middle West. Bull. Amer. Meteor. Soc., 35, 166170, https://doi.org/10.1175/1520-0477-35.4.166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliphant, T. E., 2006: A Guide to NumPy. Trelgol Publishing, 261 pp.

  • Orville, R. E., 1981: Global distribution of midnight lighting—September to November 1977. Mon. Wea. Rev., 109, 391395, https://doi.org/10.1175/1520-0493(1981)109<0391:GDOMLT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., M. A. Shapiro, R. M. Hardesty, R. J. Zamora, and J. M. Intrieri, 1991: The finescale structure of a west Texas dryline. Mon. Wea. Rev., 119, 12421258, https://doi.org/10.1175/1520-0493(1991)119<1242:TFSOAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pérez, F., and B. E. Granger, 2007: IPython: A system for interactive scientific computing. Comput. Sci. Eng., 9, 2129, https://doi.org/10.1109/MCSE.2007.53.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitchford, K. L., and J. London, 1962: The low-level jet as related to nocturnal thunderstorms over the midwest United States. J. Appl. Meteor., 1, 4347, https://doi.org/10.1175/1520-0450(1962)001<0043:TLLJAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purser, R. J., W.-S. Wu, D. F. Parrish, and N. M. Roberts, 2003: Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and isotropic Gaussian covariances. Mon. Wea. Rev., 131, 15241535, https://doi.org/10.1175//1520-0493(2003)131<1524:NAOTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabin, R. M., S. Stadler, P. J. Wetzel, D. J. Stensrud, and M. Gregory, 1990: Observed effects of landscape variability on convective clouds. Bull. Amer. Meteor. Soc., 71, 272280, https://doi.org/10.1175/1520-0477(1990)071<0272:OEOLVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rawson, H. M., and J. M. Clarke, 1988: Nocturnal transpiration in wheat. Funct. Plant Biol., 15, 397406, https://doi.org/10.1071/PP9880397.

  • Rhodes, B. C., 2011: Pyephem: Astronomical ephemeris for python, http://adsabs.harvard.edu/abs/2011ascl.soft12014R.

  • Ruiz-Barradas, A., and S. Nigam, 2013: Atmosphere–land surface interactions over the southern Great Plains: Characterization from pentad analysis of DOE ARM field observations and NARR. J. Climate, 26, 875886, https://doi.org/10.1175/JCLI-D-11-00380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., C. D. Peters-Lidard, S. V. Kumar, C. Alonge, and W.-K. Tao, 2009: A modeling and observational framework for diagnosing local land–atmosphere coupling on diurnal time scales. J. Hydrometeor., 10, 577599, https://doi.org/10.1175/2009JHM1066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., C. D. Peters-Lidard, and S. V. Kumar, 2011: Diagnosing the sensitivity of local land–atmosphere coupling via the soil moisture–boundary layer interaction. J. Hydrometeor., 12, 766786, https://doi.org/10.1175/JHM-D-10-05014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., C. D. Peters-Lidard, A. Kennedy, and S. V. Kumar, 2013: Diagnosing the nature of land–atmosphere coupling: A case study of dry/wet extremes in the U.S. southern Great Plains. J. Hydrometeor., 14, 324, https://doi.org/10.1175/JHM-D-12-023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., J. Roundy, and P. A. Dirmeyer, 2015: Quantifying the land–atmosphere coupling behavior in modern reanalysis products over the U.S. southern Great Plains. J. Climate, 28, 58135829, https://doi.org/10.1175/JCLI-D-14-00680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sastre, M., C. Yagüe, C. Román-Cascón, and G. Maqueda, 2015: Atmospheric boundary-layer evening transitions: A comparison between two different experimental sites. Bound.-Layer Meteor., 157, 375399, https://doi.org/10.1007/s10546-015-0065-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1974: The life cycle of the dryline. J. Appl. Meteor., 13, 444449, https://doi.org/10.1175/1520-0450(1974)013<0444:TLCOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, D. W., 2015: Multivariate Density Estimation: Theory, Practice, and Visualization. John Wiley and Sons, 384 pp.

    • Crossref
    • Export Citation
  • Shapiro, A., E. Fedorovich, and S. Rahimi, 2016: A unified theory for the Great Plains nocturnal low-level jet. J. Atmos. Sci., 73, 30373057, https://doi.org/10.1175/JAS-D-15-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, P. L., and C. A. Doswell III, 2001: A quantitative comparison between traditional and line integral methods of derivative estimation. Mon. Wea. Rev., 129, 25382554, https://doi.org/10.1175/1520-0493(2001)129<2538:AQCBTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, P. L., and J. Gao, 2004: Can gradient information be used to improve variational objective analysis? Mon. Wea. Rev., 132, 29772994, https://doi.org/10.1175/MWR2833.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, P. L., D. J. Stensrud, and J. M. Fritsch, 2003: A method for improved analyses of scalars and their derivatives. Mon. Wea. Rev., 131, 25552576, https://doi.org/10.1175/1520-0493(2003)131<2555:AMFIAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9, 16981711, https://doi.org/10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

    • Crossref
    • Export Citation
  • Trier, S. B., C. A. Davis, D. A. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF Model simulation. J. Atmos. Sci., 63, 24372461, https://doi.org/10.1175/JAS3768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, and R. E. Carbone, 2014: Mechanisms governing the persistence and diurnal cycle of a heavy rainfall corridor. J. Atmos. Sci., 71, 41024126, https://doi.org/10.1175/JAS-D-14-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., V. Wulfmeyer, A. Behrendt, T. A. Bonin, A. Choukulkar, R. K. Newsom, W. A. Brewer, and D. R. Cook, 2018: Response of the land–atmosphere system over north-central Oklahoma during the 2017 eclipse. Geophys. Res. Lett., 45, 16681675, https://doi.org/10.1002/2017GL076908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakefield, R. A., J. B. Basara, J. C. Furtado, B. G. Illston, C. R. Ferguson, and P. M. Klein, 2019: A modified framework for quantifying land–atmosphere covariability during hydrometeorological and soil wetness extremes in Oklahoma. J. Appl. Meteor. Climatol., 58, 14651483, https://doi.org/10.1175/JAMC-D-18-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406419, https://doi.org/10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., R. E. Dickinson, and H. Chen, 2008: A negative soil moisture–precipitation relationship and its causes. J. Hydrometeor., 9, 13641376, https://doi.org/10.1175/2008JHM955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wexler, H., 1961: A boundary layer interpretation of the low-level jet. Tellus, 13, 368378, https://doi.org/10.3402/tellusa.v13i3.9513.

  • Wingo, S. M., and K. R. Knupp, 2015: Multi-platform observations characterizing the afternoon-to-evening transition of the planetary boundary layer in northern Alabama, USA. Bound.-Layer Meteor., 155, 2953, https://doi.org/10.1007/s10546-014-9988-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 15941609, https://doi.org/10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 418 116 12
PDF Downloads 250 53 0