Stratiform and Convective Radar Reflectivity–Rain Rate Relationships and Their Potential to Improve Radar Rainfall Estimates

Bastian Kirsch Meteorological Institute, University of Hamburg, Hamburg, Germany

Search for other papers by Bastian Kirsch in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9682-0171
,
Marco Clemens Meteorological Institute, University of Hamburg, Hamburg, Germany

Search for other papers by Marco Clemens in
Current site
Google Scholar
PubMed
Close
, and
Felix Ament Meteorological Institute, University of Hamburg, Hamburg, Germany

Search for other papers by Felix Ament in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The variability of the raindrop size distribution (DSD) contributes to large parts of the uncertainty in radar-based quantitative rainfall estimates. The variety of microphysical processes acting on the formation of rainfall generally leads to significantly different relationships between radar reflectivity Z and rain rate R for stratiform and convective rainfall. High-resolution observation data from three Micro Rain Radars in northern Germany are analyzed to quantify the potential of dual ZR relationships to improve radar rainfall estimates under idealized rainfall type identification and separation. Stratiform and convective rainfall are separated with two methods, establishing thresholds for the rain rate-dependent mean drop size and the α coefficient of the power-law ZR relationship. The two types of dual ZR relationships are tested against a standard Marshall–Palmer relationship and a globally adjusted single relationship. The comparison of DSD-based and reflectivity-derived rain rates shows that the use of stratiform and convective ZR relationships reduces the estimation error of the 6-month accumulated rainfall between 30% and 50% relative to a single ZR relationship. Consistent results for neighboring locations are obtained at different rainfall intensity classes. The range of estimation errors narrows by between 20% and 40% for 10-s-integrated rain rates, dependent on rainfall intensity and separation method. The presented technique also considerably reduces the occurrence of extreme underestimations of the true rain rate for heavy rainfall, which is particularly relevant for operational applications and flooding predictions.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bastian Kirsch, bastian.kirsch@uni-hamburg.de

Abstract

The variability of the raindrop size distribution (DSD) contributes to large parts of the uncertainty in radar-based quantitative rainfall estimates. The variety of microphysical processes acting on the formation of rainfall generally leads to significantly different relationships between radar reflectivity Z and rain rate R for stratiform and convective rainfall. High-resolution observation data from three Micro Rain Radars in northern Germany are analyzed to quantify the potential of dual ZR relationships to improve radar rainfall estimates under idealized rainfall type identification and separation. Stratiform and convective rainfall are separated with two methods, establishing thresholds for the rain rate-dependent mean drop size and the α coefficient of the power-law ZR relationship. The two types of dual ZR relationships are tested against a standard Marshall–Palmer relationship and a globally adjusted single relationship. The comparison of DSD-based and reflectivity-derived rain rates shows that the use of stratiform and convective ZR relationships reduces the estimation error of the 6-month accumulated rainfall between 30% and 50% relative to a single ZR relationship. Consistent results for neighboring locations are obtained at different rainfall intensity classes. The range of estimation errors narrows by between 20% and 40% for 10-s-integrated rain rates, dependent on rainfall intensity and separation method. The presented technique also considerably reduces the occurrence of extreme underestimations of the true rain rate for heavy rainfall, which is particularly relevant for operational applications and flooding predictions.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bastian Kirsch, bastian.kirsch@uni-hamburg.de
Save
  • Alfieri, L., P. Claps, and F. Laio, 2010: Time-dependent ZR relationships for estimating rainfall fields from radar measurements. Nat. Hazards Earth Syst. Sci., 10, 149158, https://doi.org/10.5194/nhess-10-149-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D., and C. W. Ulbrich, 1977: Path- and area-integrated rainfall measurement by microwave attenuation in the 1–3 cm band. J. Appl. Meteor., 16, 13221331, https://doi.org/10.1175/1520-0450(1977)016<1322:PAAIRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D., and C. W. Ulbrich, 2006: Drop size spectra and integral remote sensing parameters in the transition from convective to stratiform rain. Geophys. Res. Lett., 33, L16803, https://doi.org/10.1029/2006GL026824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D., C. W. Ulbrich, F. D. Mark Jr., R. A. Black, E. Amitai, P. T. Willis, and C. E. Samsury, 2000: Partitioning tropical oceanic convective and stratiform rains by draft strength. J. Geophys. Res., 105, 22592267, https://doi.org/10.1029/1999JD901009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Auf der Maur, A. N., 2001: Statistical tools for drop size distributions: Moments and generalized gamma. J. Atmos. Sci., 58, 407418, https://doi.org/10.1175/1520-0469(2001)058<0407:STFDSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, P. M., 1987: Relation between measured radar reflectivity and surface rainfall. Mon. Wea. Rev., 115, 10531070, https://doi.org/10.1175/1520-0493(1987)115<1053:RBMRRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observations of the Atmosphere. University of Chicago Press, 324 pp.

  • Bringi, V. N., C. R. Williams, M. Thurai, and P. T. May, 2009: Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. J. Atmos. Oceanic Technol., 26, 21072122, https://doi.org/10.1175/2009JTECHA1258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovčić, P., D. S. Zrnić, and G. Zhang, 2015: Convective–stratiform separation using video disdrometer observations in central Oklahoma—The Bayesian approach. Atmos. Res., 155, 176191, https://doi.org/10.1016/j.atmosres.2014.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campos, E., and I. Zawadzki, 2000: Instrumental uncertainties in ZR relations. J. Appl. Meteor., 39, 10881102, https://doi.org/10.1175/1520-0450(2000)039<1088:IUIZRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caracciolo, C., F. Prodi, A. Battaglia, and F. Porcu, 2006: Analysis of the moments and parameters of a gamma DSD to infer precipitation properties: A convective stratiform discrimination algorithm. Atmos. Res., 80, 165186, https://doi.org/10.1016/j.atmosres.2005.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., and W. F. Krajewski, 1999: Radar–rain gauge comparison under observational uncertainties. J. Appl. Meteor., 38, 15191525, https://doi.org/10.1175/1520-0450(1999)038<1519:RRGCUO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Adderio, L. P., F. Porcù, and A. Tokay, 2018: Evolution of drop size distribution in natural rain. Atmos. Res., 200, 7076, https://doi.org/10.1016/j.atmosres.2017.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doelling, I. G., J. Joss, and J. Riedl, 1998: Systematic variations of ZR-relationships from drop size distributions measured in northern Germany during seven years. Atmos. Res., 47–48, 635649, https://doi.org/10.1016/S0169-8095(98)00043-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., 1965: Raindrop-size distributions from individual storms. J. Atmos. Sci., 22, 585591, https://doi.org/10.1175/1520-0469(1965)022<0585:RSDFIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243248, https://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Hu, Z., and R. C. Srivastava, 1995: Evolution of raindrop size distributions by coalescence, breakup, and evaporation: Theory and observations. J. Atmos. Sci., 52, 17611783, https://doi.org/10.1175/1520-0469(1995)052<1761:EORSDB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and T. M. Blackman, 2002: The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarization radar observations. J. Appl. Meteor., 41, 286297, https://doi.org/10.1175/1520-0450(2002)041<0286:TNTRRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joss, J., and A. Waldvogel, 1970: A method to improve the accuracy of radar-measured amounts of precipitation. 14th Radar Meteorology Conf., Tucson, AZ, Amer. Meteor. Soc., 237–238.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and J. A. Smith, 1991: On the estimation of climatological ZR relationships. J. Appl. Meteor., 30, 14361445, https://doi.org/10.1175/1520-0450(1991)030<1436:OTEOCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, G. W., and I. Zawadzki, 2005: Variability of drop size distributions: Time-scale dependence of the variability and its effects on rain estimation. J. Appl. Meteor., 44, 241255, https://doi.org/10.1175/JAM2183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, G. W., I. Zawadzki, W. Szyrmer, D. Sempere-Torres, and R. Uijlenhoet, 2004: A general approach to double-moment normalization of drop size distributions. J. Appl. Meteor., 43, 264281, https://doi.org/10.1175/1520-0450(2004)043<0264:AGATDN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lengfeld, K., M. Clemens, H. Münster, and F. Ament, 2014: Performance of high-resolution X-band weather radar networks—The PATTERN example. Atmos. Meas. Tech., 7, 41514166, https://doi.org/10.5194/amt-7-4151-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., W. Hitschfeld, and K. L. S. Gunn, 1955: Advances in radar weather. Advances in Geophysics, Vol. 2, Academic Press, 1–56, https://doi.org/10.1016/S0065-2687(08)60310-6.

    • Crossref
    • Export Citation
  • METEK, 2009: MRR Physical Basics (Version 5.2.0.1). METEK Meteorologische Messtechnik GmbH, 20 pp.

  • Penide, G., A. Protat, V. V. Kumar, and P. T. May, 2013: Comparison of two convective/stratiform precipitation classification techniques: Radar reflectivity texture versus drop size distribution-based approach. J. Atmos. Oceanic Technol., 30, 27882797, https://doi.org/10.1175/JTECH-D-13-00019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, G., B. Fischer, and T. Andersson, 2002: Rain observations with a vertically looking Micro Rain Radar (MRR). Boreal Environ. Res., 7, 353362.

    • Search Google Scholar
    • Export Citation
  • Peters, G., B. Fischer, H. Münster, M. Clemens, and A. Wagner, 2005: Profiles of raindrop size distributions as retrieved by microrain radars. J. Appl. Meteor., 44, 19301949, https://doi.org/10.1175/JAM2316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, T. H., and A. Berne, 2016a: Small-scale variability of the raindrop size distribution and its effect on areal rainfall retrieval. J. Hydrometeor., 17, 20772104, https://doi.org/10.1175/JHM-D-15-0214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, T. H., and A. Berne, 2016b: Spatial interpolation of experimental raindrop size distribution spectra. Quart. J. Roy. Meteor. Soc., 142, 125137, https://doi.org/10.1002/qj.2801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, T. H., and A. Berne, 2017: Retrieval of the raindrop size distribution from polarimetric radar data using double-moment normalization. Atmos. Meas. Tech., 10, 25732594, https://doi.org/10.5194/amt-10-2573-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and C. W. Ulbrich, 2003: Cloud microphysical properties, processes, and rainfall estimations opportunities. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM), Meteor. Monogr., No. 51, Amer. Meteor. Soc., 237–258, https://doi.org/10.1175/0065-9401(2003)030<0237:CMPPAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., E. Amitai, and D. B. Wolf, 1995a: Classification of rain regimes by the three-dimensional properties of reflectivity fields. J. Appl. Meteor., 34, 198211, https://doi.org/10.1175/1520-0450(1995)034<0198:CORRBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., E. Amitai, and D. B. Wolf, 1995b: Improved accuracy of radar WPMM estimated rainfall upon application of objective classification criteria. J. Appl. Meteor., 34, 212223, https://doi.org/10.1175/1520-0450-34.1.212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sempere-Torres, D., R. Sánches-Diezma, I. Zawadzki, and J. D. Creutin, 2000: Identification of stratiform and convective areas using radar data with application to the improvement of DSD analysis and ZR relations. Phys. Chem. Earth, 25, 985990, https://doi.org/10.1016/S1464-1909(00)00138-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Short, D. A., T. Kozu, and K. Nakamura, 1990: Rainrate and raindrop size distribution observations in Darwin, Australia. Proc. URSI Commision F Open Symp. on Regional Factors in Predicting Radiowave Attenuation Due to Rain, Rio de Janeiro, Brazil, International Union of Radio Science Commission, 35–40.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., and W. F. Krajewski, 1993: A modeling study of rainfall rate–reflectivity relationships. Water Resour. Res., 29, 25052514, https://doi.org/10.1029/93WR00962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, M., and R. A. Houze Jr., 1997: Sensitivity of the estimated monthly convective rain fraction to the choice of ZR relation. J. Appl. Meteor., 36, 452462, https://doi.org/10.1175/1520-0450(1997)036<0452:SOTEMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, M., and J. A. Smith, 1998: Convective versus stratiform rainfall: An ice-microphysical and kinematic conceptual model. Atmos. Res., 47–48, 317326, https://doi.org/10.1016/S0169-8095(97)00086-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, M., and J. A. Smith, 2000: Reflectivity, rain rate, and kinetic energy flux relationships based on raindrop spectra. J. Appl. Meteor., 39, 19231940, https://doi.org/10.1175/1520-0450(2000)039<1923:RRRAKE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, M., and J. A. Smith, 2004: Scale dependence of radar-rainfall rates – An assessment based on raindrop spectra. J. Hydrometeor., 5, 11711180, https://doi.org/10.1175/JHM-383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, M., J. A. Smith, and R. Uijlenhoet, 2004: A microphysical interpretation of radar reflectivity–rain rate relationships. J. Atmos. Sci., 61, 11141131, https://doi.org/10.1175/1520-0469(2004)061<1114:AMIORR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stout, G. E., and E. A. Mueller, 1968: Survey of relationships between rainfall rate and radar reflectivity in the measurement of precipitation. J. Appl. Meteor., 7, 465474, https://doi.org/10.1175/1520-0450(1968)007<0465:SORBRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distributions to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., and V. N. Bringi, 2018: Application of the generalized gamma model to represent the full rain drop size distribution. J. Appl. Meteor. Climatol., 57, 11971210, https://doi.org/10.1175/jamc-d-17-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., V. N. Bringi, and P. T. May, 2010: CPOL radar-derived drop size distribution statistics of stratiform and convective rain for two regimes in Darwin, Australia. J. Atmos. Oceanic Technol., 27, 932942, https://doi.org/10.1175/2010JTECHA1349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., P. N. Gatlin, and V. N. Bringi, 2016: Separating stratiform and convective rain types based on the drop size distribution characteristics using 2D video disdrometer data. Atmos. Res., 169, 416423, https://doi.org/10.1016/j.atmosres.2015.04.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355371, https://doi.org/10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., and P. G. Bashor, 2010: An experimental study of small-scale variability of raindrop size distributions. J. Appl. Meteor. Climatol., 49, 23482365, https://doi.org/10.1175/2010JAMC2269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., D. A. Short, C. R. Williams, W. L. Ecklund, and K. S. Gage, 1999: Tropical rainfall associated with convective and stratiform clouds: Intercomparison of disdrometer and profiler measurements. J. Appl. Meteor., 38, 302320, https://doi.org/10.1175/1520-0450(1999)038<0302:TRAWCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., L. P. D’Adderio, F. Porcù, D. B. Wolff, and W. A. Petersen, 2017: A field study of footprint-scale variability of raindrop size distribution. J. Hydrometeor., 18, 31653179, https://doi.org/10.1175/JHM-D-17-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., 2001: Raindrop size distributions and radar reflectivity–rain rate relationships of radar hydrology. Hydrol. Earth Syst. Sci., 5, 615627, https://doi.org/10.5194/hess-5-615-2001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the drop size distribution. J. Climate Appl. Meteor., 22, 17641775, https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 1984: Assessment of the contribution of differential polarization to improve rainfall measurements. Radio Sci., 19, 4957, https://doi.org/10.1029/RS019i001p00049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 1998: Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor., 37, 912923, https://doi.org/10.1175/1520-0450(1998)037<0912:RMARPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 2002: On the separation of tropical convective and stratiform rains. J. Appl. Meteor., 41, 188195, https://doi.org/10.1175/1520-0450(2002)041<0188:OTSOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos. Sci., 31, 10671078, https://doi.org/10.1175/1520-0469(1974)031<1067:TJORS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., 1975: Tropfenspektren, Niederschlagstyp und ZR Beziehungen (Drop spectra, precipitation types, and Z–R relations). Meteor. Z., 28, 3336.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1997: Measurements of raindrop size distributions over the Pacific warm pool and implications for ZR relations. J. Appl. Meteor., 36, 847867, https://doi.org/10.1175/1520-0450(1997)036<0847:MORSDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., 1984: Factors effecting the precision of radar measurements of rain. 22nd Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc., 251–256.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1494 466 49
PDF Downloads 1216 378 39