An Updated Severe Hail and Tornado Climatology for Eastern Colorado

Samuel J. Childs Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Samuel J. Childs in
Current site
Google Scholar
PubMed
Close
and
Russ S. Schumacher Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Russ S. Schumacher in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A localized tornado and severe hail climatology is updated and enhanced for eastern Colorado. This region is one of the most active severe weather areas in the United States because of its location immediately east of the Rocky Mountains, intrusions of Gulf of Mexico moisture into a dry climate, and various small-scale topographically forced features such as the “Denver Cyclone.” Since the 1950s, both annual tornado and severe (≥1.0 in.; 1 in. = 25.4 mm) hail reports and days have been increasing across the area, but several nonmeteorological factors distort the record. Of note is a large population bias in the severe hail data, with reports aligned along major roadways and in cities, and several field projects contributing to an absence of (E)F0 tornado reports [on the (enhanced) Fujita scale] in the 1980s. In the more consistently observed period since 1997, tornado reports and days show a slight decreasing trend while severe hail reports and days show an increasing trend, although large variability exists on the county level. Eastern Colorado tornadoes are predominantly weak, rarely above (E)F1 intensity, and with a maximum just east of the northern urban corridor. Severe hail has a maximum along the foothills and shows a trend toward a larger ratio of significant (≥2.0 in.; ≥50.8 mm) hail to severe hail reports over time. Both tornadoes and severe hail have trended toward shorter seasons since 1997, mostly attributable to an earlier end to the season. By assessing current and historical trends from a more localized perspective, small-scale climatological features and local societal impacts are exposed—features that national climatologies can miss.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Samuel J. Childs, sjchilds@rams.colostate.edu

Abstract

A localized tornado and severe hail climatology is updated and enhanced for eastern Colorado. This region is one of the most active severe weather areas in the United States because of its location immediately east of the Rocky Mountains, intrusions of Gulf of Mexico moisture into a dry climate, and various small-scale topographically forced features such as the “Denver Cyclone.” Since the 1950s, both annual tornado and severe (≥1.0 in.; 1 in. = 25.4 mm) hail reports and days have been increasing across the area, but several nonmeteorological factors distort the record. Of note is a large population bias in the severe hail data, with reports aligned along major roadways and in cities, and several field projects contributing to an absence of (E)F0 tornado reports [on the (enhanced) Fujita scale] in the 1980s. In the more consistently observed period since 1997, tornado reports and days show a slight decreasing trend while severe hail reports and days show an increasing trend, although large variability exists on the county level. Eastern Colorado tornadoes are predominantly weak, rarely above (E)F1 intensity, and with a maximum just east of the northern urban corridor. Severe hail has a maximum along the foothills and shows a trend toward a larger ratio of significant (≥2.0 in.; ≥50.8 mm) hail to severe hail reports over time. Both tornadoes and severe hail have trended toward shorter seasons since 1997, mostly attributable to an earlier end to the season. By assessing current and historical trends from a more localized perspective, small-scale climatological features and local societal impacts are exposed—features that national climatologies can miss.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Samuel J. Childs, sjchilds@rams.colostate.edu
Save
  • Aguilera, E., 2007: Holly tornado: Total destruction. Denver Post, 29 March, https://www.denverpost.com/2007/03/29/holly-tornado-total-destruction/.

    • Search Google Scholar
    • Export Citation
  • Agee, E., and S. Childs, 2014: Adjustments in tornado counts, F-scale intensity, and path width for assessing significant tornado destruction. J. Appl. Meteor. Climatol., 53, 14941505, https://doi.org/10.1175/JAMC-D-13-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agee, E., and L. Taylor, 2019: Historical analysis of U.S. tornado fatalities (1808–2017): Population, science, and technology. Wea. Climate Soc., 11, 355368, https://doi.org/10.1175/WCAS-D-18-0078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agee, E., J. Larson, S. Childs, and A. Marmo, 2016: Spatial redistribution of U.S. tornado activity between 1954 and 2013. J. Appl. Meteor. Climatol., 55, 16811697, https://doi.org/10.1175/JAMC-D-15-0342.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., and M. K. Tippett, 2015: The characteristics of United States hail reports: 1955–2014. Electron. J. Severe Storms Meteor., 10 (3), http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/149.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015: An empirical model relating U.S. monthly hail occurrence to large-scale meteorological environment. J. Adv. Model. Earth Syst., 7, 226243, https://doi.org/10.1002/2014MS000397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. K. Tippett, Y. Kaheil, A. H. Sobel, C. Lepore, S. Nong, and A. Muehlbauer, 2017: An extreme value model for U.S. hail size. Mon. Wea. Rev., 145, 45014519, https://doi.org/10.1175/MWR-D-17-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. J. Molina, and V. A. Gensini, 2018: Modulation of annual cycle of tornadoes by El Niño–Southern Oscillation. Geophys. Res. Lett., 45, 57085717, https://doi.org/10.1029/2018GL077482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., 2007: Spatial and temporal analysis of tornado fatalities in the United States: 1880–2005. Wea. Forecasting, 22, 12141228, https://doi.org/10.1175/2007WAF2007004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bieringer, P., and P. S. Ray, 1996: A comparison of tornado warning lead times with and without NEXRAD Doppler radar. Wea. Forecasting, 11, 4752, https://doi.org/10.1175/1520-0434(1996)011<0047:ACOTWL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blair, S. F., and Coauthors, 2017: High-resolution hail observations: Implications for NWS warning operations. Wea. Forecasting, 32, 11011119, https://doi.org/10.1175/WAF-D-16-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brady, R. H., and E. J. Szoke, 1989: A case study of nonmesocyclone tornado development in northeast Colorado: Similarities to waterspout formation. Mon. Wea. Rev., 117, 843856, https://doi.org/10.1175/1520-0493(1989)117<0843:ACSONT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and M. P. Kay, 2003a: Climatological estimates of local daily tornado probability for the United States. Wea. Forecasting, 18, 626640, https://doi.org/10.1175/1520-0434(2003)018<0626:CEOLDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003b: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67, 7394, https://doi.org/10.1016/S0169-8095(03)00045-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., G. W. Carbin, and P. T. Marsh, 2014: Increased variability of tornado occurrence in the United States. Science, 346, 349352, https://doi.org/10.1126/science.1257460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1977: The scales of hail. J. Appl. Meteor., 16, 626648, https://doi.org/10.1175/1520-0450(1977)016<0626:TSOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1999: Data and approaches for determining hail risk in the contiguous United States. J. Appl. Meteor. Climatol., 38, 17301739, https://doi.org/10.1175/1520-0450(1999)038<1730:DAAFDH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 2009: Increasing major hail losses in the US. Climatic Change, 96, 161166, https://doi.org/10.1007/s10584-009-9597-z.

  • Childs, S. J., and R. S. Schumacher, 2018: The anomalously large 2018 hail season of eastern Colorado: A local perspective on a national trend. 29th Conf. on Severe Local Storms, Stowe, VT, Amer. Meteor. Soc., 33, https://ams.confex.com/ams/29SLS/webprogram/Paper348238.html.

  • Childs, S. J., R. S. Schumacher, and J. T. Allen, 2018: Cold-season tornadoes: Climatological and meteorological insights. Wea. Forecasting, 33, 671691, https://doi.org/10.1175/WAF-D-17-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., T. M. Smith, V. Lakshmanan, H. E. Brooks, and K. L. Ortega, 2012: An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 12351248, https://doi.org/10.1175/WAF-D-11-00151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., 2017: Observed trends in US tornado frequency. Climate Extremes: Patterns and Mechanisms, Geophys. Monogr., Vol. 226, Amer. Geophys. Union, 237–247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coleman, T. A., and P. G. Dixon, 2014: An objective analysis of tornado risk in the United States. Wea. Forecasting, 29, 366376, https://doi.org/10.1175/WAF-D-13-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colorado Climate Center, 2019: North American monsoon. Colorado State University, accessed 23 July 2019, https://climate.colostate.edu/co_nam.html.

  • Concannon, P., H. Brooks, and C. Doswell, 2000: Climatological risk of strong and violent tornadoes in the United States. Preprints, Second Conf. on Environmental Applications, Long Beach, CA, Amer. Meteor. Soc., 9.4, https://ams.confex.com/ams/annual2000/techprogram/paper_6471.htm.

    • Search Google Scholar
    • Export Citation
  • Cook, A. R., L. M. Leslie, D. B. Parsons, and J. T. Schaefer, 2017: The impact of El Niño–Southern Oscillation (ENSO) on winter and early spring US tornado outbreaks. J. Appl. Meteor. Climatol., 56, 24552478, https://doi.org/10.1175/JAMC-D-16-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T. D., R. E. Saffle, and J. W. Wilson, 1998: An update on the NEXRAD program and future WSR-88D support to operations. Wea. Forecasting, 13, 253262, https://doi.org/10.1175/1520-0434(1998)013<0253:AUOTNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doesken, N. J., 1994: Hail, hail, hail! The summertime hazard of eastern Colorado. Colorado State University Colorado Climate Publ. Vol. 17 No. 7, 11 pp., https://www.cocorahs.org/media/docs/hail_1994.pdf.

  • Doswell, C. A., III, 1980: Synoptic-scale environments associated with High Plains severe thunderstorms. Bull. Amer. Meteor. Soc., 61, 13881400, https://doi.org/10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, 2007: Historical overview of severe convective storms research. Electron. J. Severe Storms Meteor., 2 (1), http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/13/15.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and D. W. Burgess, 1988: On some issues of United States tornado climatology. Mon. Wea. Rev., 116, 495501, https://doi.org/10.1175/1520-0493(1988)116<0495:OSIOUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, R., and H. Brooks, 2010: Possible impacts of the enhanced Fujita scale on United States tornado data. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., P8.28, https://ams.confex.com/ams/pdfpapers/175398.pdf.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., J. G. LaDue, J. T. Ferree, K. Scharfenberg, C. Maier, and W. L. Coulbourne, 2013: Tornado intensity estimation: Past, present, and future. Bull. Amer. Meteor. Soc., 94, 641653, https://doi.org/10.1175/BAMS-D-11-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, R., J. T. Allen, and G. W. Carbin, 2018: Reliability and climatological impacts of convective wind estimations. J. Appl. Meteor. Climatol., 57, 18251845, https://doi.org/10.1175/JAMC-D-17-0306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., S. C. Elsner, and T. H. Jagger, 2015: The increasing efficiency of tornado days in the United States. Climate Dyn., 45, 651659, https://doi.org/10.1007/s00382-014-2277-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erdman, J., 2017: The most tornado-prone counties in the U.S. The Weather Channel, https://weather.com/storms/tornado/news/most-tornado-prone-us-counties.

  • Farney, T. J., and P. G. Dixon, 2015: Variability of tornado climatology across the continental United States. Int. J. Climatol., 35, 29933006, https://doi.org/10.1002/joc.4188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrich, K., and Coauthors, 2019: CHAT: The Colorado Hail Accumulation from Thunderstorms project. Bull. Amer. Meteor. Soc., 100, 459472, https://doi.org/10.1175/BAMS-D-16-0277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., and J. T. Allen, 2018: U.S. hail frequency and the Global Wind Oscillation. Geophys. Res. Lett., 45, 16111620, https://doi.org/10.1002/2017GL076822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., and H. E. Brooks, 2018: Spatial trends in United States tornado frequency. Nat. Climate Atmos. Sci., 1, 38, https://doi.org/10.1038/s41612-018-0048-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., and A. Marinaro, 2016: Tornado frequency in the United States related to global relative angular momentum. Mon. Wea. Rev., 144, 801810, https://doi.org/10.1175/MWR-D-15-0289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gochis, D., and Coauthors, 2015: The great Colorado flood of September 2013. Bull. Amer. Meteor. Soc., 96, 14611487, https://doi.org/10.1175/BAMS-D-13-00241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grazulis, T. P., 1993: Significant Tornadoes: 1680-1991: A Chronology and Analysis of Events. The Tornado Project of Environmental Films, 1340 pp.

  • Grazulis, T. P., J. T. Schaefer, and R. F. Abbey, 1993: Advances in tornado climatology, hazards, and risk assessment since Tornado Symposium II. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 409–426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, L., K. Wang, and H. B. Bluestein, 2016: Variability of tornado occurrence over the continental United States since 1950. Geophys. Res. Atmos., 121, 69436953, https://doi.org/10.1002/2015JD024465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2014: Performance of operational model precipitation forecast guidance during the 2013 Colorado Front-Range floods. Mon. Wea. Rev., 142, 26092618, https://doi.org/10.1175/MWR-D-14-00007.1; Corrigendum, 145, 403–404, https://doi.org/10.1175/MWR-D-16-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodanish, S. J., B. J. Vogt, and P. Wolyn, 2019: Colorado lightning climatology. J. Oper. Meteor., 7, 4560, https://doi.org/10.15191/NWAJOM.2019.0704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoogewind, K. A., M. E. Baldwin, and R. J. Trapp, 2017: The impact of climate change on hazardous convective weather in the United States: Insight from high-resolution dynamical downscaling. J. Climate, 30, 10 08110 100, https://doi.org/10.1175/JCLI-D-16-0885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalina, E. A., K. Friedrich, B. C. Motta, W. Deierling, G. T. Stano, and N. N. Rydell, 2016: Colorado plowable hailstorms: Synoptic weather, radar, and lightning characteristics. Wea. Forecasting, 31, 663693, https://doi.org/10.1175/WAF-D-15-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, D., J. Schaefer, R. McNulty, C. Doswell III, and R. Abbey Jr., 1978: An augmented tornado climatology. Mon. Wea. Rev., 106, 11721183, https://doi.org/10.1175/1520-0493(1978)106<1172:AATC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Measures. Charles Griffin, 202 pp.

  • Kis, A. K., and J. M. Straka, 2010: Nocturnal tornado climatology. Wea. Forecasting, 25, 545561, https://doi.org/10.1175/2009WAF2222294.1.

  • Kumjian, M. R., Z. J. Lebo, and A. M. Ward, 2019: Storms producing large accumulations of small hail. J. Appl. Meteor. Climatol., 58, 341364, https://doi.org/10.1175/JAMC-D-18-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaDue, J. G., J. Wurman, M. Levitan, F. Lombardo, C. Karstens, J. Robinson, and W. Coulbourne, 2018: Advances in development of the ASCE/SEI/AMS standard for wind speed estimation in tornadoes and other windstorms. 29th Conf. on Severe Local Storms, Stowe, VT, Amer. Meteor. Soc., 29, https://ams.confex.com/ams/29SLS/webprogram/Paper348726.html.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., A. T. Wittenberg, D. B. Enfield, S. J. Weaver, C. Wang, and R. Atlas, 2016: U.S. regional tornado outbreaks and their links to spring ENSO phases and North Atlantic SST variability. Environ. Res. Lett., 11, 044008, https://doi.org/10.1088/1748-9326/11/4/044008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R., D. Rodgers, W. Deitrich, and D. Bartels, 1981: Meteorological settings associated with significant convective storms in Colorado. NOAA ERL OWRM Tech. Memo., 75 pp.

  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • McDonald, J. R., and K. C. Mehta, 2006: A recommendation for an enhanced Fujita scale (EF-scale). Texas Tech University Wind Science and Engineering Center, 95 pp., https://www.spc.noaa.gov/faq/tornado/ef-ttu.pdf.

  • Mock, C. J., 1996: Climatic controls and spatial variations of precipitation in the western United States. J. Climate, 9, 11111125, https://doi.org/10.1175/1520-0442(1996)009<1111:CCASVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molina, M. J., J. T. Allen, and V. A. Gensini, 2018: The Gulf of Mexico and ENSO influence on subseasonal and seasonal CONUS winter tornado variability. J. Appl. Meteor. Climatol., 57, 24392463, https://doi.org/10.1175/JAMC-D-18-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEI, 2009: State Climate Extremes Committee: Proposed standards for the collection, storage, and measurement of hailstones. NOAA Tech. Rep., 6 pp., https://ncdc.noaa.gov/monitoring-content/extremes/scec/reports/SCEC-Hail-Guide.pdf.

  • NSSL, 2017: NSSL Research: Tornadoes. NOAA, https://www.nssl.noaa.gov/research/tornadoes/.

  • NWS Boulder, 2008: May 22, 2008 Windsor Tornado. National Weather Service, https://www.weather.gov/bou/TornadoMay22nd2008.

  • Ortega, K. L., T. M. Smith, K. L. Manross, K. A. Scharfenberg, A. Witt, A. G. Kolodziej, and J. J. Gourley, 2009: The Severe Hazards and Verification Experiment. Bull. Amer. Meteor. Soc., 90, 15191530, https://doi.org/10.1175/2009BAMS2815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., C. Broyles, P. S. Skinner, H. E. Brooks, and E. Rasmussen, 2019: A Bayesian hierarchical modeling framework for correcting reporting bias in the U.S. tornado database. Wea. Forecasting, 34, 1530, https://doi.org/10.1175/WAF-D-18-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and G. J. Holland, 2018: Global estimates of damaging hail hazard. Wea. Climate Extremes, 22, 1023, https://doi.org/10.1016/j.wace.2018.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reges, H. W., N. Doesken, J. Turner, N. Newman, A. Bergantino, and Z. Schwalbe, 2016: COCORAHS: The evolution and accomplishments of a volunteer rain gauge network. Bull. Amer. Meteor. Soc., 97 , 18311846, https://doi.org/10.1175/BAMS-D-14-00213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocky Mountain Insurance Information Association, 2018: Hail. RMIIA, http://www.rmiia.org/catastrophes_and_statistics/Hail.asp.

  • Sander, J., J. F. Eichner, E. Faust, and M. Steuer, 2013: Rising variability in thunderstorm-related U.S. losses as a reflection of changes in large-scale thunderstorm forcing. Wea. Climate Soc., 5, 317331, https://doi.org/10.1175/WCAS-D-12-00023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., and R. Edwards, 1999: The SPC tornado/severe thunderstorm database. Preprints, 11th Conf. on Applied Climatology, Dallas, TX, Amer. Meteor. Soc., 215–220.

  • Schlatter, T. W., and N. Doesken, 2010: Deep hail: Tracking an elusive phenomenon. Weatherwise, 63 (5), 3541, https://doi.org/10.1080/00431672.2010.503841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., D. T. Lindsey, A. B. Schumacher, J. Braun, S. D. Miller, and J. L. Demuth, 2010: Multidisciplinary analysis of an unusual tornado: Meteorology, climatology, and the communication and interpretation of warnings. Wea. Forecasting, 25, 14121429, https://doi.org/10.1175/2010WAF2222396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spears, C. K., 2017: Climatology of Colorado tornadoes: Are Colorado tornadoes growing longer and stronger in time?, Colorado State University Colorado Climate Publ., 16 pp., http://ccc.atmos.colostate.edu/pdfs/Climatology_of_Colorado_Tornadoes.pdf.

  • State Farm, 2019: Top 10 states for hail damage. State Farm, accessed 16 July 2019, https://newsroom.statefarm.com/top-10-states-for-hail-damage-claims-2019?cmpid=PArel031819Top10HailStates&utm_source=Direct.

  • Szoke, E. J., M. Weisman, J. Brown, F. Caracena, and T. Schlatter, 1984: A subsynoptic analysis of the Denver tornadoes of 3 June 1981. Mon. Wea. Rev., 112, 790808, https://doi.org/10.1175/1520-0493(1984)112<0790:ASAOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szoke, E. J., D. Barjenbruch, R. Glancy, and R. Kleyla, 2006: The Denver Cyclone and tornadoes 25 years later: The continued challenge of predicting non-supercell tornadoes. 23rd Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., P8.7, https://ams.confex.com/ams/pdfpapers/115160.pdf.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., 2014: Changing volatility of U.S. annual tornado reports. Geophys. Res. Lett., 41, 69566961, https://doi.org/10.1002/2014GL061347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., 2018: Robustness of relations between the MJO and U.S. tornado occurrence. Mon. Wea. Rev., 146, 38733884, https://doi.org/10.1175/MWR-D-18-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verbout, S. M., H. E. Brooks, L. M. Leslie, and D. M. Schultz, 2006: Evolution of the U.S. tornado database: 1954–2003. Wea. Forecasting, 21, 8693, https://doi.org/10.1175/WAF910.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and J. W. Wilson, 1989: Non-supercell tornadoes. Mon. Wea. Rev., 117, 11131140, https://doi.org/10.1175/1520-0493(1989)117<1113:NST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcoxon, F., 1945: Individual comparisons by ranking methods. Biom. Bull., 1, 8083, https://doi.org/10.2307/3001968.

  • Wilson, J. W., J. A. Moore, G. B. Foote, B. Martner, A. R. Rodi, T. Uttal, and J. M. Wilczak, 1988: Convection Initiation and Downburst Experiment (CINDE). Bull. Amer. Meteor. Soc., 69, 13281347, https://doi.org/10.1175/1520-0477(1988)069<1328:CIADE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1559 409 26
PDF Downloads 726 195 9