• Ackerman, T. P., and G. M. Stokes, 2003: The Atmospheric Radiation Measurement program. Phys. Today, 56, 3844, https://doi.org/10.1063/1.1554135.

  • Berne, A., J. Jaffrain, and M. Schleiss, 2012: Scaling analysis of the variability of the rain drop size distribution at small scale. Adv. Water Resour., 45, 212, https://doi.org/10.1016/j.advwatres.2011.12.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674684, https://doi.org/10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., G.-J. Huang, V. Chandrasekar, and E. Gogucci, 2002: A methodology for estimating the parameters of a gamma raindrop size distribution model from polarimetric radar data: Application to a squall-line event from the TRMM/Brazil campaign. J. Atmos. Oceanic Technol., 19, 633645, https://doi.org/10.1175/1520-0426(2002)019<0633:AMFETP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 22382255, https://doi.org/10.1175/2008JAMC1732.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-P., and S.-T. Liu, 2004: Physically based two-moment bulk water parameterization for warm-cloud microphysics. Quart. J. Roy. Meteor. Soc., 130, 5178, https://doi.org/10.1256/qj.03.41.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diamond, H. J., and Coauthors, 2013: U.S. Climate Reference Network after one decade of operations: Status and assessment. Bull. Amer. Meteor. Soc., 94, 485498, https://doi.org/10.1175/BAMS-D-12-00170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., S. Tzivion, and Z. Levin, 1988: Evolution of raindrop spectra. Part I: Solution to the stochastic collection/breakup equation using the method of moments. J. Atmos. Sci., 45, 33873399, https://doi.org/10.1175/1520-0469(1988)045<3387:EORSPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., P. E. Roundy, C. J. Schreck, A. Vintzileos, and C. Zhang, 2013: Large-scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Mon. Wea. Rev., 141, 41734196, https://doi.org/10.1175/MWR-D-13-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausdorff, F., 1921: Summationsmethoden und Momentfolgen. I. Math. Z., 9, 74109, https://doi.org/10.1007/BF01378337.

  • Hu, Z., and R. C. Srivastava, 1995: Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. J. Atmos. Sci., 52, 17611783, https://doi.org/10.1175/1520-0469(1995)052<1761:EORSDB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and T. M. Blackman, 2002: The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarization radar observations. J. Appl. Meteor., 41, 286297, https://doi.org/10.1175/1520-0450(2002)041<0286:TNTRRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joss, J., and A. Waldvogel, 1967: Ein Spektrograph für Niederschlagstropfen mit automatischer Auswertung. Pure Appl. Geophys., 68, 240246, https://doi.org/10.1007/BF00874898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., and A. Belochitski, 2012: Parameterization of cloud microphysics based on full integral moments. J. Atmos. Sci., 69, 22292242, https://doi.org/10.1175/JAS-D-11-0268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602617, https://doi.org/10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 20422060, https://doi.org/10.1175/JAS-D-11-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and O. P. Prat, 2014: The impact of raindrop collisional processes on the polarimetric radar variables. J. Atmos. Sci., 71, 305230, https://doi.org/10.1175/JAS-D-13-0357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laroche, S., W. Szyrmer, and I. Zawadzki, 2005: A microphysical bulk formulation based on scaling normalization of the particle size distribution. Part II: Data assimilation into physical processes. J. Atmos. Sci., 62, 42224237, https://doi.org/10.1175/JAS3621.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larsen, M. L., and K. A. O’Dell, 2016: Sampling variability effects in drop-resolving disdrometer observations. J. Geophys. Res. Atmos., 121, 11 77711 791, https://doi.org/10.1002/2016JD025491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, G.-W., I. Zawadzki, W. Szyrmer, D. Sempere Torres, and R. Uijlenhoet, 2004: A general approach to double-moment normalization of drop size distributions. J. Appl. Meteor., 43, 264281, https://doi.org/10.1175/1520-0450(2004)043<0264:AGATDN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leeper, R. D., J. Rennie, and M. A. Palecki, 2015: Observational perspectives from U.S. Climate Reference Network (USCRN) and Cooperative Observer Program (COOP) network: Temperature and precipitation comparison. J. Atmos. Oceanic Technol., 32, 703721, https://doi.org/10.1175/JTECH-D-14-00172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • List, R., N. R. Donaldson, and R. E. Stewart, 1987: Temporal evolution of drop spectra to collisional equilibrium in steady and pulsating rain. J. Atmos. Sci., 44, 362372, https://doi.org/10.1175/1520-0469(1987)044<0362:TEODST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, D. E., 1991: Series with general exponents. J. Math. Anal. Appl., 156, 184208, https://doi.org/10.1016/0022-247X(91)90390-L.

  • Loffler-Mang, M., and J. Joss, 2000: An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol., 17, 130139, https://doi.org/10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, C. N., J. H. Mather, and T. P. Ackerman, 2016: The ARM tropical western Pacific (TWP) sites. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0024.1.

    • Crossref
    • Export Citation
  • Low, T. B., and R. List, 1982a: Collision, coalescence and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup. J. Atmos. Sci., 39, 15911606, https://doi.org/10.1175/1520-0469(1982)039<1591:CCABOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Low, T. B., and R. List, 1982b: Collision, coalescence and breakup of raindrops. Part II: Parameterization of fragment size distributions. J. Atmos. Sci., 39, 16071618, https://doi.org/10.1175/1520-0469(1982)039<1607:CCABOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and J. M. Voyles, 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, https://doi.org/10.1175/BAMS-D-11-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., 2004: A new representation of collision-induced breakup of raindrops and its implications for the shapes of raindrop size distributions. J. Atmos. Sci., 61, 777794, https://doi.org/10.1175/1520-0469(2004)061<0777:ANROCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, https://doi.org/10.1175/JAS3535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. A., K. Nitschke, T. P. Ackerman, W. R. Ferrell, N. Hickmon, and M. Ivey, 2016: The ARM mobile facilities. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0051.1.

    • Crossref
    • Export Citation
  • Petaja, T., and Coauthors, 2016: BAECC: A field campaign to elucidate the impact of biogenic aerosols on clouds and climate. Bull. Amer. Meteor. Soc., 97, 19091928, https://doi.org/10.1175/BAMS-D-14-00199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and A. P. Barros, 2007a: A robust numerical solution of the stochastic collection–breakup equation for warm rain. J. Appl. Meteor. Climatol., 46, 14801497, https://doi.org/10.1175/JAM2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and A. P. Barros, 2007b: Exploring the use of a column model for the characterization of microphysical processes in warm rain: Results from a homogeneous rainshaft model. Adv. Geosci., 10, 145152, https://doi.org/10.5194/adgeo-10-145-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and A. P. Barros, 2009: Exploring the transient behavior of ZR relationships: Implications for radar rainfall estimation. J. Appl. Meteor. Climatol., 48, 21272143, https://doi.org/10.1175/2009JAMC2165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., A. P. Barros, and F. Y. Testik, 2012: On the influence of raindrop collision outcomes on equilibrium drop size distributions. J. Atmos. Sci., 69, 15341546, https://doi.org/10.1175/JAS-D-11-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1978: Microphysics and Clouds and Precipitation. D. Reidel, 714 pp.

    • Crossref
    • Export Citation
  • Raupach, T. H., and A. Berne, 2017: Invariance of the double-moment normalized raindrop size distribution through 3D spatial displacement in stratiform rain. J. Appl. Meteor. Climatol., 56, 16631680, https://doi.org/10.1175/JAMC-D-16-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., A. Khain, U. Blahak, and K. D. Beheng, 2005: Possible effects of collisional breakup on mixed-phase deep convection simulated by a spectral (bin) cloud model. J. Atmos. Sci., 62, 19171931, https://doi.org/10.1175/JAS3432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sekhon, R. S., and R. C. Srivastava, 1971: Doppler radar observations of drop-size distributions in a thunderstorm. J. Atmos. Sci., 28, 983994, https://doi.org/10.1175/1520-0469(1971)028<0983:DROODS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sempere Torres, D., J. M. Porra, and J.-D. Creutin, 1994: A general formulation for raindrop size distribution. J. Appl. Meteor., 33, 14941502, https://doi.org/10.1175/1520-0450(1994)033<1494:AGFFRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sempere Torres, D., J. M. Porra, and J.-D. Creutin, 1998: Experimental evidence of a general description for raindrop size distribution properties. J. Geophys. Res., 103, 17851797, https://doi.org/10.1029/97JD02065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sempere Torres, D., R. Sanchez-Diezma, I. Zawadzki, and J.-D. Creutin, 1999: DSD identification following a pre-classification of rainfall type from radar analysis. Preprints, 29th Conf. on Radar Meteorology, Montreal, QC, Canada, Amer. Meteor. Soc., 632–635.

  • Sempere Torres, D., R. Sanchez-Diezma, I. Zawadzki, and J.-D. Creutin, 2000: Identification of stratiform and convective areas using radar data with application to the improvement of DSD analysis and Z–R relations. Phys. Chem. Earth, 25, 985990, https://doi.org/10.1016/S1464-1909(00)00138-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shipway, B. J., and A. A. Hill, 2012: Diagnosis of systematic differences between multiple parametrizations of warm rain microphysics using a kinematic framework. Quart. J. Roy. Meteor. Soc., 138, 21962211, https://doi.org/10.1002/qj.1913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shohat, J. A., and J. D. Tamarkin, 1943: The Problem of Moments. American Mathematical Society, 140 pp.

    • Crossref
    • Export Citation
  • Sisterson, D. L., R. A. Peppler, T. S. Cress, P. J. Lamb, and D. D. Turner, 2016: The ARM Southern Great Plains (SGP) site. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0004.1.

    • Crossref
    • Export Citation
  • Srivastava, R. C., 1967: On the role of coalescence between raindrops in shaping their size distribution. J. Atmos. Sci., 24, 287292, https://doi.org/10.1175/1520-0469(1967)024<0287:OTROCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1971: Size distribution of raindrops generated by their breakup and coalescence. J. Atmos. Sci., 28, 410415, https://doi.org/10.1175/1520-0469(1971)028<0410:SDORGB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, W., K. Beheng, A. Seifert, J. Schlottke, and B. Weigand, 2010: Numerical investigation of collision-induced breakup of raindrops. Part II: Parameterizations of coalescence efficiencies and fragment size distributions. J. Atmos. Sci., 67, 576588, https://doi.org/10.1175/2009JAS3175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., S. Laroche, and I. Zawadzki, 2005: A microphysical bulk formulation based on scaling normalization of the particle size distribution. Part I: Description. J. Atmos. Sci., 62, 42064221, https://doi.org/10.1175/JAS3620.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testik, F. Y., A. P. Barros, and L. F. Bliven, 2011: Toward a physical characterization of raindrop collision outcomes. J. Atmos. Sci., 68, 10971113, https://doi.org/10.1175/2010JAS3706.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., W. A. Petersen, A. Tokay, C. Schultz, and P. Gatlin, 2011: Drop size distribution comparisons between Parsivel and 2-D video disdrometers. Adv. Geosci., 30, 39, https://doi.org/10.5194/adgeo-30-3-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., A. Kruger, and W. F. Krajewski, 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteor., 40, 20832097, https://doi.org/10.1175/1520-0450(2001)040<2083:CODSDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., J. A. Smith, and M. Steiner, 2003: The microphysical structure of extreme precipitation as inferred from ground-based raindrop spectra. J. Atmos. Sci., 60, 12201238, https://doi.org/10.1175/1520-0469(2003)60<1220:TMSOEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valdez, M. P., and K. C. Young, 1985: Number fluxes in equilibrium raindrop populations: A Markov chain analysis. J. Atmos. Sci., 42, 10241036, https://doi.org/10.1175/1520-0469(1985)042<1024:NFIERP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41, 16481661, https://doi.org/10.1175/1520-0469(1984)041<1648:FFTSOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, https://doi.org/10.1175/BAMS-D-12-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, N., G. Delrieu, B. Boudevillain, P. Hazenberg, and R. Uijlenhoet, 2014: Unified formulation of single- and multimoment normalizations of the raindrop size distribution based on the gamma probability density function. J. Appl. Meteor. Climatol., 53, 166179, https://doi.org/10.1175/JAMC-D-12-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 880 286 27
PDF Downloads 616 193 23

A General N-Moment Normalization Method for Deriving Raindrop Size Distribution Scaling Relationships

Hugh MorrisonNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Hugh Morrison in
Current site
Google Scholar
PubMed
Close
,
Matthew R. KumjianDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Matthew R. Kumjian in
Current site
Google Scholar
PubMed
Close
,
Charlotte P. MartinkusDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Charlotte P. Martinkus in
Current site
Google Scholar
PubMed
Close
,
Olivier P. PratNorth Carolina Institute for Climate Studies, North Carolina State University, Asheville, North Carolina

Search for other papers by Olivier P. Prat in
Current site
Google Scholar
PubMed
Close
, and
Marcus van Lier-WalquiNASA Goddard Institute for Space Studies, and Center for Climate Systems Research, Columbia University, New York, New York

Search for other papers by Marcus van Lier-Walqui in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A general drop size distribution (DSD) normalization method is formulated in terms of generalized power series relating any DSD moment to any number and combination of reference moments. This provides a consistent framework for comparing the variability of normalized DSD moments using different sets of reference moments, with no explicit assumptions about the DSD functional form (e.g., gamma). It also provides a method to derive any unknown moment plus an estimate of its uncertainty from one or more known moments, which is relevant to remote sensing retrievals and bulk microphysics schemes in weather and climate models. The approach is applied to a large dataset of disdrometer-observed and bin microphysics-modeled DSDs. As expected, the spread of normalized moments decreases as the number of reference moments is increased, quantified by the logarithmic standard deviation of the normalized moments, σ. Averaging σ for all combinations of reference moments and normalized moments of integer order 0–10, 42.9%, 81.3%, 93.7%, and 96.9% of spread are accounted for applying one-, two-, three-, and four-moment normalizations, respectively. Thus, DSDs can be well characterized overall using three reference moments, whereas adding a fourth reference moment contributes little independent information. The spread of disdrometer-observed DSD moments from uncertainty associated with drop count statistics generally lies between values of σ using two- and three-moment normalizations. However, this uncertainty has little impact on the derived DSD scaling relationships or σ when considered.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: H. Morrison, hmorrison@ucar.edu

Abstract

A general drop size distribution (DSD) normalization method is formulated in terms of generalized power series relating any DSD moment to any number and combination of reference moments. This provides a consistent framework for comparing the variability of normalized DSD moments using different sets of reference moments, with no explicit assumptions about the DSD functional form (e.g., gamma). It also provides a method to derive any unknown moment plus an estimate of its uncertainty from one or more known moments, which is relevant to remote sensing retrievals and bulk microphysics schemes in weather and climate models. The approach is applied to a large dataset of disdrometer-observed and bin microphysics-modeled DSDs. As expected, the spread of normalized moments decreases as the number of reference moments is increased, quantified by the logarithmic standard deviation of the normalized moments, σ. Averaging σ for all combinations of reference moments and normalized moments of integer order 0–10, 42.9%, 81.3%, 93.7%, and 96.9% of spread are accounted for applying one-, two-, three-, and four-moment normalizations, respectively. Thus, DSDs can be well characterized overall using three reference moments, whereas adding a fourth reference moment contributes little independent information. The spread of disdrometer-observed DSD moments from uncertainty associated with drop count statistics generally lies between values of σ using two- and three-moment normalizations. However, this uncertainty has little impact on the derived DSD scaling relationships or σ when considered.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: H. Morrison, hmorrison@ucar.edu
Save