• Allen, J. T., M. K. Tippett, Y. Kaheil, A. H. Sobel, C. Lepore, S. Nong, and A. Muehlbauer, 2017: An extreme value model for U.S. hail size. Mon. Wea. Rev., 145, 45014519, https://doi.org/10.1175/MWR-D-17-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aydin, K., T. A. Seliga, and V. Balaji, 1986: Remote sensing of hail with a dual linear polarized radar. J. Climate Appl. Meteor., 25, 14751484, https://doi.org/10.1175/1520-0450(1986)025<1475:RSOHWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blair, S. F., D. R. Deroche, J. M. Boustead, J. W. Leighton, B. L. Barjenbruch, and W. P. Gargan, 2011: A radar-based assessment of the detectability of giant hail. Electron. J. Severe Storms Meteor., 6 (7), https://www.ejssm.org/ojs/index.php/ejssm/article/viewFile/87/.

    • Search Google Scholar
    • Export Citation
  • Blair, S. F., and Coauthors, 2017: High-resolution hail observations: Implications for NWS warning operations. Wea. Forecasting, 32, 11011119, https://doi.org/10.1175/WAF-D-16-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., and D. R. Huffman, 1983: Absorption and Scattering of Light by Small Particles. 1st ed. Wiley-VCH, 547 pp.

  • Bringi, V. N., and T. A. Seliga, 1977a: Scattering from axisymmetric dielectrics or perfect conductors imbedded in an axisymmetric dielectric. IEEE Trans. Antennas Propag., 25, 575580, https://doi.org/10.1109/TAP.1977.1141642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and T. A. Seliga, 1977b: Scattering from nonspherical hydrometeors. Ann. Telecommun., 32, 392397.

  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. 1st ed. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Brown, T. M., W. H. Pogorzelski, and I. M. Giammanco, 2015: Evaluating hail damage using property insurance claims data. Wea. Climate Soc., 7, 197210, https://doi.org/10.1175/WCAS-D-15-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., R. Keranen, S. Lim, and D. Moisseev, 2013: Recent advances in classification of observations from dual polarization weather radars. Atmos. Res., 119, 97111, https://doi.org/10.1016/j.atmosres.2011.08.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S., D. Changnon, and S. D. Hilberg, 2009: Hailstorms across the nation: An atlas about hail and its damages. Illinois State Water Survey Contract Rep. 2009-12, 92 pp.

  • Cintineo, J. L., T. M. Smith, V. Lakshmanan, H. E. Brooks, and K. L. Ortega, 2012: An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 12351248, https://doi.org/10.1175/WAF-D-11-00151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dennis, E. J., and M. R. Kumjian, 2017: The impact of vertical wind shear on hail growth in simulated supercells. J. Atmos. Sci., 74, 641663, https://doi.org/10.1175/JAS-D-16-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, R., and R. L. Thompson, 1998: Nationwide comparisons of hail size with WSR-88D vertically integrated liquid water and derived thermodynamic sounding data. Wea. Forecasting, 13, 277285, https://doi.org/10.1175/1520-0434(1998)013<0277:NCOHSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foote, G. B., 1984: A study of hail growth utilizing observed storm conditions. J. Climate Appl. Meteor., 23, 84101, https://doi.org/10.1175/1520-0450(1984)023<0084:ASOHGU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giammanco, I. M., T. M. Brown, R. G. Grant, D. L. Dewey, J. D. Hodel, and R. A. Stumpf, 2015: Evaluating the hardness characteristics of hail through compressive strength measurements. J. Atmos. Oceanic Technol., 32, 21002113, https://doi.org/10.1175/JTECH-D-15-0081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., and A. V. Ryzhkov, 2008: Estimation of rainfall based on the results of polarimetric echo classification. J. Appl. Meteor. Climatol., 47, 24452462, https://doi.org/10.1175/2008JAMC1753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., R. McGraw, and L. Lei, 2013: An application of linear programming to polarimetric radar differential phase processing. J. Atmos. Oceanic Technol., 30, 17161729, https://doi.org/10.1175/JTECH-D-12-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, L. D., and S. C. van den Heever, 2014: Microphysical and dynamical characteristics of low-precipitation and classic supercells. J. Atmos. Sci., 71, 26042624, https://doi.org/10.1175/JAS-D-13-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunturi, P., and M. Tippett, 2017: Managing severe thunderstorm risk: Impact of ENSO on U.S. tornado and hail frequencies. Willis Re Tech. Rep., 5 pp., http://www.willisre.com/Media_Room/Press_Releases_(Browse_All)/2017/WillisRe_Impact_of_ENSO_on_US_Tornado_and_Hail_frequencies_Final.pdf.

  • Heymsfield, A. J., 1983: Case study of a hailstorm in Colorado. Part IV: Graupel and hail growth mechanisms deduced through particle trajectory calculations. J. Atmos. Sci., 40, 14821509, https://doi.org/10.1175/1520-0469(1983)040<1482:CSOAHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., and V. N. Bringi, 1995: An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements. J. Atmos. Oceanic Technol., 12, 643648, https://doi.org/10.1175/1520-0426(1995)012<0643:AIFTFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., and V. N. Bringi, 2000: The effects of three-body scattering on differential reflectivity signatures. J. Atmos. Oceanic Technol., 17, 5161, https://doi.org/10.1175/1520-0426(2000)017<0051:TEOTBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jewell, R., and J. Brimelow, 2009: Evaluation of Alberta hail growth model using severe hail proximity soundings from the United States. Wea. Forecasting, 24, 15921609, https://doi.org/10.1175/2009WAF2222230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A. W., and K. E. Sugden, 2014: Evaluation of sounding-derived thermodynamic and wind-related parameters associated with large hail events. Electron. J. Severe Storms Meteor., 9 (5), https://ejssm.org/ojs/index.php/ejssm/article/viewArticle/137.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and G. Zhang, 2010: Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysics scheme. J. Appl. Meteor. Climatol., 49, 146163, https://doi.org/10.1175/2009JAMC2178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalina, E. A., K. Friedrich, B. C. Motta, W. Deierling, G. T. Stano, and N. N. Rydell, 2016: Colorado plowable hailstorms: Synoptic weather, radar, and lightning characteristics. Wea. Forecasting, 31, 663693, https://doi.org/10.1175/WAF-D-15-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and N. C. Knight, 2001: Hailstorms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 223–248, https://doi.org/10.1175/0065-9401-28.50.223.

    • Crossref
    • Export Citation
  • Kumjian, M. R., 2013a: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013b: Principles and applications of dual-polarization weather radar. Part II: Warm and cold season applications. J. Oper. Meteor., 1, 243264, https://doi.org/10.15191/nwajom.2013.0120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013c: Principles and applications of dual-polarization weather radar. Part III: Artifacts. J. Oper. Meteor., 1, 265274, https://doi.org/10.15191/nwajom.2013.0121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2018: Weather radars. Remote Sensing of Clouds and Precipitation, C. Andronache, Ed., Springer-Verlag, 15–63.

    • Crossref
    • Export Citation
  • Kumjian, M. R., and Z. J. Lebo, 2016: Large accumulations of small hail. 28th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 8A.4, https://ams.confex.com/ams/28SLS/webprogram/Paper301237.html.

  • Kumjian, M. R., J. C. Picca, S. Ganson, A. V. Ryzhkov, J. Krause, D. Zrnić, and A. Khain, 2010: Polarimetric characteristics of large hail. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 11.2, https://ams.confex.com/ams/25SLS/techprogram/paper_176043.htm.

  • Kumjian, M. R., S. M. Ganson, and A. V. Ryzhkov, 2012: Raindrop freezing in deep convective updrafts: A microphysical and polarimetric model. J. Atmos. Sci., 69, 34713490, https://doi.org/10.1175/JAS-D-12-067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. P. Khain, N. BenMoshe, E. Ilotoviz, A. V. Ryzhkov, and V. T. J. Phillips, 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. Climatol., 53, 18201843, https://doi.org/10.1175/JAMC-D-13-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., Z. J. Lebo, and H. C. Morrison, 2015: On the mechanisms of rain formation in an idealized supercell storm. Mon. Wea. Rev., 143, 27542773, https://doi.org/10.1175/MWR-D-14-00402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., Y. P. Richardson, T. Meyer, K. A. Kosiba, and J. Wurman, 2018: Resonance scattering effects in wet hail observed with the dual-X-band-frequency, dual-polarization Doppler on Wheels radar. J. Appl. Meteor. Climatol., 57, 27132731, https://doi.org/10.1175/JAMC-D-17-0362.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., C. Martinkus, O. P. Prat, S. Collis, M. van Lier-Walqui, and H. C. Morrison, 2019: A moment-based polarimetric radar forward operator for rain microphysics. J. Appl. Meteor. Climatol., 58, 113–130, https://doi.org/10.1175/JAMC-D-18-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeffler, S., and M. R. Kumjian, 2018: Quantifying the separation of enhanced ZDR and KDP regions in nonsupercell tornadic storms. Wea. Forecasting, 33, 11431157, https://doi.org/10.1175/WAF-D-18-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. 1st ed. Wiley-Blackwell, 407 pp.

    • Crossref
    • Export Citation
  • Morrison, H., M. R. Kumjian, C. P. Martinkus, O. P. Prat, and M. van Lier-Walqui, 2019: A general N-moment normalization method for deriving raindrop size distribution scaling relationships. J. Appl. Meteor. Climatol., 58, 247–267, https://doi.org/10.1175/JAMC-D-18-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, S. P., 1983: The influence of storm flow structure on hail growth. J. Atmos. Sci., 40, 19651983, https://doi.org/10.1175/1520-0469(1983)040<1965:TIOSFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NWS, 2014: Warm dry weather and drought return to the borderland. National Weather Service (El Paso, TX) Southwest Weather Bull. Spring-Summer 2014, https://www.weather.gov/media/epz/swww/swwb2014a.pdf.

  • Ortega, K. L., 2018: Evaluating multi-radar, multi-sensor products for surface hail-fall diagnosis. Electron. J. Severe Storms Meteor., 13 (1), https://www.ejssm.org/ojs/index.php/ejssm/article/viewFile/163/.

    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., T. M. Smith, K. L. Manross, A. G. Kolodziej, K. A. Scharfenberg, A. Witt, and J. J. Gourley, 2009: The Severe Hazards Analysis and Verification Experiment. Bull. Amer. Meteor. Soc., 90, 15191530, https://doi.org/10.1175/2009BAMS2815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., J. M. Krause, and A. V. Ryzhkov, 2016: Polarimetric radar characteristics of melting hail. Part III: Validation of the algorithm for hail size discrimination. J. Appl. Meteor. Climatol., 55, 829848, https://doi.org/10.1175/JAMC-D-15-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2014: Composite VORTEX2 supercell environments from near-storm soundings. Mon. Wea. Rev., 142, 508529, https://doi.org/10.1175/MWR-D-13-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picca, J. C., and A. V. Ryzhkov, 2012: A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Mon. Wea. Rev., 140, 13851403, https://doi.org/10.1175/MWR-D-11-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and A. J. Heymsfield, 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 27542763, https://doi.org/10.1175/1520-0469(1987)044<2754:MASOGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeder, P., 2012: Severe Weather in North America: Perils, Risks, and Insurance. Knowledge Series: Natural Hazards, Munich RE, 274 pp.

  • Ryzhkov, A. V., 2001: Interpretation of polarimetric radar covariance matrix for meteorological scatterers: Theoretical analysis. J. Atmos. Oceanic Technol., 18, 315328, https://doi.org/10.1175/1520-0426(2001)018<0315:IOPRCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2007: The impact of beam broadening on the quality of radar polarimetric data. J. Atmos. Oceanic Technol., 24, 729744, https://doi.org/10.1175/JTECH2003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnić, 2005: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, https://doi.org/10.1175/BAMS-86-6-809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894, https://doi.org/10.1175/2010JAMC2363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and A. P. Khain, 2013a: Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol., 52, 28492870, https://doi.org/10.1175/JAMC-D-13-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and P. Zhang, 2013b: Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteor. Climatol., 52, 28712886, https://doi.org/10.1175/JAMC-D-13-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scotten, K. N., T. T. Lindley, J. B. Boettcher, M. Martinez, and J. Puryear, 2013: Dual-polarization radar observations of an enhanced precipitation hail and flash flood event. 19th Conf. on Planned and Inadvertent Weather Modification, Austin, TX, Amer. Meteor. Soc., 3.5, https://ams.confex.com/ams/93Annual/webprogram/Paper218293.html.

  • Smith, P. L., 2010: The unit symbol for the logarithmic scale of radar reflectivity factors. J. Atmos. Oceanic Technol., 27, 615616, https://doi.org/10.1175/2009JTECHA1360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., H. B. Bluestein, G. Zhang, and S. J. Frasier, 2010: Attenuation correction and hydrometeor classification of high-resolution, X-band, dual-polarized mobile radar measurements in severe convective storms. J. Atmos. Oceanic Technol., 27, 19792001, https://doi.org/10.1175/2010JTECHA1356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., L. J. Miller, K. C. Wiens, and S. A. Rutledge, 2005: The 29 June supercell observed during STEPS. Part I: Kinematics and microphysics. J. Atmos. Sci., 62, 41274150, https://doi.org/10.1175/JAS3585.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 1982: Hail parameter relations: A comprehensive digest. J. Appl. Meteor., 21, 2243, https://doi.org/10.1175/1520-0450(1982)021<0022:HPRACD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and V. N. Bringi, 1988: Dual-polarization observations of microbursts associated with intense convection: The 20 July storm during the MIST project. Mon. Wea. Rev., 116, 15211539, https://doi.org/10.1175/1520-0493(1988)116<1521:DPOOMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, R., K. Friedrich, B. Meier, W. Deierling, E. A. Kalina, P. T. Schlatter, and M. Serpas, 2018: Observing deep hail accumulations on the Colorado and Wyoming Front Range. 29th Conf. on Severe Local Storms, Stowe, VT, Amer. Meteor. Soc., 11.2, https://ams.confex.com/ams/29SLS/webprogram/Paper348484.html.

  • Wang, Y., and V. Chandrasekar, 2009: Algorithm for estimation of the specific differential phase. J. Atmos. Oceanic Technol., 26, 25652578, https://doi.org/10.1175/2009JTECHA1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, A., M. R. Kumjian, M. J. Bunkers, S. Bieda, and B. J. Simpson, 2018: Using polarimetric radar data to identify potentially hazardous hail accumulations. 34th Conf. on Environmental Information Processing Technologies, Austin, TX, Amer. Meteor. Soc., 11B.1, https://ams.confex.com/ams/98Annual/webprogram/Paper326596.html.

  • Witt, A., N. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., 1987: Three-body scattering produces precipitation signature of special diagnostic value. Radio Sci., 22, 7686, https://doi.org/10.1029/RS022i001p00076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389406, https://doi.org/10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., G. Zhang, V. Melnikov, and J. Andrić, 2010: Three-body scattering and hail size. J. Appl. Meteor. Climatol., 49, 687700, https://doi.org/10.1175/2009JAMC2300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1846 531 32
PDF Downloads 1274 441 22

Storms Producing Large Accumulations of Small Hail

Matthew R. KumjianDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Matthew R. Kumjian in
Current site
Google Scholar
PubMed
Close
,
Zachary J. LeboDepartment of Atmospheric Sciences, University of Wyoming, Laramie, Wyoming

Search for other papers by Zachary J. Lebo in
Current site
Google Scholar
PubMed
Close
, and
Aaron M. WardNational Weather Service, Amarillo, Texas

Search for other papers by Aaron M. Ward in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Hail-bearing storms produce substantial socioeconomic impacts each year, yet challenges remain in forecasting the type of hail threat supported by a given environment and in using radar to estimate hail sizes more accurately. One class of hail threat is storms producing large accumulations of small hail (SPLASH). This paper presents an analysis of the environments and polarimetric radar characteristics of such storms. Thirteen SPLASH events were selected to encompass a broad range of geographic regions and times of year. Rapid Refresh model output was used to characterize the mesoscale environments associated with each case. This analysis reveals that a range of environments can support SPLASH cases; however, some commonalities included large precipitable water (exceeding that day’s climatological 90th-percentile values), CAPE < 2500 J kg−1, weak storm-relative wind speeds (<10 m s−1) in the lowest few kilometers of the troposphere, and a weak component of the storm-relative flow orthogonal to the 0–6-km shear vector. Most of the storms were weak supercells that featured distinctive S-band radar signatures, including compact (<200 km2) regions of reflectivity factor > 60 dBZ, significant differential attenuation evident as negative differential reflectivity extending downrange of the hail core, and anomalously large specific differential phase KDP. The KDP values often approached or exceeded the operational color scale’s upper limit (10.7° km−1); reprocessing the level-II data revealed KDP >17° km−1, the highest documented in precipitation at S band. Electromagnetic scattering calculations using the T-matrix method confirm that large quantities of small melting hail mixed with heavy rain can plausibly explain the observed radar signatures.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-18-0073.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. Kumjian, kumjian@psu.edu

Abstract

Hail-bearing storms produce substantial socioeconomic impacts each year, yet challenges remain in forecasting the type of hail threat supported by a given environment and in using radar to estimate hail sizes more accurately. One class of hail threat is storms producing large accumulations of small hail (SPLASH). This paper presents an analysis of the environments and polarimetric radar characteristics of such storms. Thirteen SPLASH events were selected to encompass a broad range of geographic regions and times of year. Rapid Refresh model output was used to characterize the mesoscale environments associated with each case. This analysis reveals that a range of environments can support SPLASH cases; however, some commonalities included large precipitable water (exceeding that day’s climatological 90th-percentile values), CAPE < 2500 J kg−1, weak storm-relative wind speeds (<10 m s−1) in the lowest few kilometers of the troposphere, and a weak component of the storm-relative flow orthogonal to the 0–6-km shear vector. Most of the storms were weak supercells that featured distinctive S-band radar signatures, including compact (<200 km2) regions of reflectivity factor > 60 dBZ, significant differential attenuation evident as negative differential reflectivity extending downrange of the hail core, and anomalously large specific differential phase KDP. The KDP values often approached or exceeded the operational color scale’s upper limit (10.7° km−1); reprocessing the level-II data revealed KDP >17° km−1, the highest documented in precipitation at S band. Electromagnetic scattering calculations using the T-matrix method confirm that large quantities of small melting hail mixed with heavy rain can plausibly explain the observed radar signatures.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-18-0073.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. Kumjian, kumjian@psu.edu

Supplementary Materials

    • Supplemental Materials (PDF 59.6 MB)
Save