• Bankert, R. L., and P. M. Tag, 2002: An automated method to estimate tropical cyclone intensity using SSM/I imagery. J. Appl. Meteor., 41, 461472, https://doi.org/10.1175/1520-0450(2002)041<0461:AAMTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bankert, R. L., and J. Cossuth, 2016: Tropical cyclone intensity estimation via passive microwave data features. 32nd Conf. on Hurricanes and Tropical Meteorology, San Juan, PR, Amer. Meteor. Soc., 10C.1, https://ams.confex.com/ams/32Hurr/webprogram/Paper292705.html.

  • Brueske, K. F., and C. S. Velden, 2003: Satellite-based tropical cyclone intensity estimation using the NOAA-KLM series Advanced Microwave Sounding Unit (AMSU). Mon. Wea. Rev., 131, 687697, https://doi.org/10.1175/1520-0493(2003)131<0687:SBTCIE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and E. J. Zipser, 1999: Relationships between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice-scattering signature and lightning. Mon. Wea. Rev., 127, 103123, https://doi.org/10.1175/1520-0493(1999)127<0103:RBTCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chirokova, G., M. DeMaria, J. Knaff, S. Longmore, and J. F. Dostalek, 2018: Hurricane intensity and wind structure estimation: From AMSU to TROPICS. 33rd Conf. on Hurricanes and Tropical Meteorology, Ponte Verdi, FL, Amer. Meteor. Soc., 251, https://ams.confex.com/ams/33HURRICANE/webprogram/Paper339690.html.

  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., M. DeMaria, J. A. Knaff, and T. H. Vonder Haar, 2004: Evaluation of Advanced Microwave Sounding Unit tropical-cyclone intensity and size estimation algorithms. J. Appl. Meteor., 43, 282296, https://doi.org/10.1175/1520-0450(2004)043<0282:EOAMSU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., M. DeMaria, and J. A. Knaff, 2006: Improvement of Advanced Microwave Sounding Unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45, 15731581, https://doi.org/10.1175/JAM2429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1972: A technique for the analysis and forecasting of tropical cyclone intensities from satellite pictures. NOAA Tech. Memo. NESS 36, 15 pp.

  • Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. 11, 45 pp.

  • Fetanat, G., A. Homaifar, and K. R. Knapp, 2013: Objective tropical cyclone intensity estimation using analogs of spatial features in satellite data. Wea. Forecasting, 28, 14461459, https://doi.org/10.1175/WAF-D-13-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franke, G. R., 2010: Multicollinearity. Wiley International Encyclopedia of Marketing, J. Sheth and N. Malhotra, Eds., John Wiley & Sons Ltd., https://doi.org/10.1002/9781444316568.wiem02066.

    • Crossref
    • Export Citation
  • Glass, M., and G. W. Felde, 1992: Intensity estimation of tropical cyclones using SSM/I brightness temperatures. Preprints, Sixth Conf. on Satellite Meteorology and Oceanography, Atlanta, GA, Amer. Meteor. Soc., J8–J10.

  • Herndon, D., and C. S. Velden, 2006: Upgrades to the UW-CIMSS AMSU-based tropical cyclone intensity algorithm. 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 4B.5, https://ams.confex.com/ams/27Hurricanes/techprogram/paper_108186.htm.

  • Herndon, D., and C. S. Velden, 2018: An update on the CIMSS Satellite Consensus (SATCON) tropical cyclone intensity algorithm. 33rd Conf. on Hurricanes and Tropical Meteorology, Ponte Verdi, FL, Amer. Meteor. Soc., 284, https://ams.confex.com/ams/33HURRICANE/webprogram/Paper340235.html.

  • Herndon, D., C. S. Velden, R. Bennartz, and Z. Li, 2018: Tropical cyclone intensity estimation from the TROPICS CubeSat satellite constellation. 33rd Conf. on Hurricanes and Tropical Meteorology, Ponte Verdi, FL, Amer. Meteor. Soc., 11D.4, https://ams.confex.com/ams/33HURRICANE/webprogram/Paper340277.html.

  • Jiang, H., C. Liu, and E. J. Zipser, 2011: A TRMM-based tropical cyclone cloud and precipitation feature database. J. Appl. Meteor. Climatol., 50, 12551274, https://doi.org/10.1175/2011JAMC2662.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., E. M. Ramirez, and D. J. Cecil, 2013: Convective and rainfall properties of tropical cyclone inner cores and rainbands from 11 years of TRMM data. Mon. Wea. Rev., 141, 431450, https://doi.org/10.1175/MWR-D-11-00360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., and T. H. Vonder Haar, 1995: Satellite Meteorology: An Introduction. Academic Press, 466 pp.

    • Crossref
    • Export Citation
  • Kidder, S. Q., M. D. Goldberg, R. M. Zehr, M. DeMaria, J. F. W. Purdom, C. S. Velden, N. C. Grody, and S. J. Kusselson, 2000: Satellite analysis of tropical cyclones using the Advanced Microwave Sounding Unit (AMSU). Bull. Amer. Meteor. Soc., 81, 12411260, https://doi.org/10.1175/1520-0477(2000)081<1241:SAOTCU>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., D. P. Brown, J. Courtney, G. M. Gallina, and J. L. Beven, 2010: An evaluation of Dvorak technique–based tropical cyclone intensity estimates. Wea. Forecasting, 25, 13621379, https://doi.org/10.1175/2010WAF2222375.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., K. R. Knapp, D. J. Vimont, R. J. Murnane, and B. A. Harper, 2007: A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett., 34, L04815, https://doi.org/10.1029/2006GL028836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. S. Olson, and L. Giglio, 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 12131232, https://doi.org/10.1109/36.536538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C., and J. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olander, T. L., and C. S. Velden, 2007: The advanced Dvorak technique: Continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Wea. Forecasting, 22, 287298, https://doi.org/10.1175/WAF975.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olander, T. L., and C. S. Velden, 2018: The UW-CIMMS Advanced Dvorak Technique (ADT): Current status and future upgrades. 33rd Conf. on Hurricanes and Tropical Meteorology, Ponte Verdi, FL, Amer. Meteor. Soc., 247, https://ams.confex.com/ams/33HURRICANE/webprogram/Handout/Paper339058/AMSSatConf2018-P247-ADT_Final.pdf.

  • Piñeros, M. F., E. A. Ritchie, and J. S. Tyo, 2008: Objective measures of tropical cyclone structure and intensity change from remotely sensed infrared image data. IEEE Trans. Geosci. Remote Sens., 46, 35743580, https://doi.org/10.1109/TGRS.2008.2000819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piñeros, M. F., E. A. Ritchie, and J. S. Tyo, 2011: Estimating tropical cyclone intensity from infrared image data. Wea. Forecasting, 26, 690698, https://doi.org/10.1175/WAF-D-10-05062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pradhan, R., R. S. Aygun, M. Maskey, R. Ramachandran, and D. J. Cecil, 2018: Tropical cyclone intensity estimation using a deep convolutional neural network. IEEE Trans. Image Process., 27, 692702, https://doi.org/10.1109/TIP.2017.2766358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, G. V., and P. D. MacArthur, 1994: The SSM/I estimated rainfall amounts of tropical cyclones and their potential in predicting the cyclone intensity changes. Mon. Wea. Rev., 122, 15681574, https://doi.org/10.1175/1520-0493(1994)122<1568:TSERAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., G. Valliere-Kelley, M. F. Piñeros, and J. S. Tyo, 2012: Tropical cyclone intensity estimation in the North Atlantic basin using an improved deviation angle variance technique. Wea. Forecasting, 27, 12641277, https://doi.org/10.1175/WAF-D-11-00156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., K. M. Wood, O. G. Rodriguez-Herrera, M. F. Piñeros, and J. S. Tyo, 2014: Satellite-derived tropical cyclone intensity in the North Pacific Ocean using the deviation-angle variance technique. Wea. Forecasting, 29, 505516, https://doi.org/10.1175/WAF-D-13-00133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., and H. F. Pierce, 1995: A satellite observational study of precipitation characteristics in western North Pacific tropical cyclones. J. Appl. Meteor., 34, 25872599, https://doi.org/10.1175/1520-0450(1995)034<2587:ASOSOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., S. W. Chang, and H. F. Pierce, 1994: A satellite observational and numerical study of precipitation characteristics in western North Atlantic tropical cyclones. J. Appl. Meteor., 33, 129139, https://doi.org/10.1175/1520-0450(1994)033<0129:ASOANS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., R. F. Adler, and G. R. North, 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278295, https://doi.org/10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273, https://doi.org/10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., T. Olander, and R. M. Zehr, 1998: Development of an objective scheme to estimate tropical cyclone intensity from digital geostationary satellite imagery. Wea. Forecasting, 13, 172186, https://doi.org/10.1175/1520-0434(1998)013<0172:DOAOST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wimmers, A. J., and C. S. Velden, 2010: Objectively determining the rotational center of tropical cyclones in passive microwave satellite imagery. J. Appl. Meteor. Climatol., 49, 20132034, https://doi.org/10.1175/2010JAMC2490.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 562 237 9
PDF Downloads 487 162 8

Estimation of Tropical Cyclone Intensity in the North Atlantic and Northeastern Pacific Basins Using TRMM Satellite Passive Microwave Observations

Haiyan JiangDepartment of Earth and Environment, Florida International University, Miami, Florida

Search for other papers by Haiyan Jiang in
Current site
Google Scholar
PubMed
Close
,
Cheng TaoDepartment of Earth and Environment, Florida International University, Miami, Florida, and Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by Cheng Tao in
Current site
Google Scholar
PubMed
Close
, and
Yongxian PeiDepartment of Earth and Environment, Florida International University, Miami, Florida

Search for other papers by Yongxian Pei in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A statistical passive microwave intensity estimation (PMW-IE) algorithm for estimating the intensity of tropical cyclones (TCs) in the North Atlantic and northeastern and central Pacific basins is developed and tested. The algorithm is derived from Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) 85-GHz brightness temperatures and near-surface rain-rate retrievals to provide objective estimates of current maximum sustained surface winds (Vmax) and 6-h future Vmax of TCs. The full record of TRMM data (1998–2013) including 2326 TMI overpasses of 503 TCs is separated into dependent samples (1998–2010) for model development and independent samples (2011–13) for model verification. The best track intensities are used as dependent variables in a stepwise multiple-regression approach. Separately for each basin, three regression models are derived using selected 1) 85-GHz-only variables, 2) rain-rate-only variables, and 3) combined 85-GHz and rain variables. The algorithms are evaluated using independent samples and those with contemporaneous aircraft-reconnaissance measurements. Rain-only and combined models perform better than the 85-GHz-only model. Lower errors are found for estimating the 6-h future Vmax than estimating the current Vmax using all three models. This suggests that it is optimal to use passive-microwave-retrieved rain variables observed a few hours earlier to estimate TC intensity. The MAE (RMSE) of 6-h future Vmax is 9 (12) kt (1 kt ≈ 0.51 m s−1) when testing the combined models with ATL and EPA independent samples. Aircraft-reconnaissance-based independent samples yields a MAE of 9.6 kt and RMSE of 12.6 kt for estimating 6-h future Vmax.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Haiyan Jiang, haiyan.jiang@fiu.edu

Abstract

A statistical passive microwave intensity estimation (PMW-IE) algorithm for estimating the intensity of tropical cyclones (TCs) in the North Atlantic and northeastern and central Pacific basins is developed and tested. The algorithm is derived from Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) 85-GHz brightness temperatures and near-surface rain-rate retrievals to provide objective estimates of current maximum sustained surface winds (Vmax) and 6-h future Vmax of TCs. The full record of TRMM data (1998–2013) including 2326 TMI overpasses of 503 TCs is separated into dependent samples (1998–2010) for model development and independent samples (2011–13) for model verification. The best track intensities are used as dependent variables in a stepwise multiple-regression approach. Separately for each basin, three regression models are derived using selected 1) 85-GHz-only variables, 2) rain-rate-only variables, and 3) combined 85-GHz and rain variables. The algorithms are evaluated using independent samples and those with contemporaneous aircraft-reconnaissance measurements. Rain-only and combined models perform better than the 85-GHz-only model. Lower errors are found for estimating the 6-h future Vmax than estimating the current Vmax using all three models. This suggests that it is optimal to use passive-microwave-retrieved rain variables observed a few hours earlier to estimate TC intensity. The MAE (RMSE) of 6-h future Vmax is 9 (12) kt (1 kt ≈ 0.51 m s−1) when testing the combined models with ATL and EPA independent samples. Aircraft-reconnaissance-based independent samples yields a MAE of 9.6 kt and RMSE of 12.6 kt for estimating 6-h future Vmax.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Haiyan Jiang, haiyan.jiang@fiu.edu
Save