• Abidi, M. A., and R. C. Gonzalez, 1988: Cloud motion measurement from radar image sequences. Proc. SPIE, 0846, 5460, https://doi.org/10.1117/12.942644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adrian, R. J., 2005: Twenty years of particle image velocimetry. Exp. Fluids, 39, 159169, https://doi.org/10.1007/s00348-005-0991-7.

  • Arking, A., R. C. Lo, and A. Rosenfeld, 1978: A Fourier approach to cloud motion estimation. J. Appl. Meteor., 17, 735744, https://doi.org/10.1175/1520-0450(1978)017<0735:AFATCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., and J. R. Mecikalski, 2005: Application of satellite-derived atmospheric motion vectors for estimating mesoscale flows. J. Appl. Meteor., 44, 17611772, https://doi.org/10.1175/JAM2264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., C. S. Velden, R. A. Petersen, and W. F. Feltz, 2009: Comparisons of satellite-derived atmospheric motion vectors, rawinsondes, and NOAA wind profiler observations. J. Appl. Meteor. Climatol., 48, 15421561, https://doi.org/10.1175/2009JAMC1867.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belden, J., and A. H. Techet, 2011: Simultaneous quantitative flow measurement using PIV on both sides of the air–water interface for breaking waves. Exp. Fluids, 50, 149161, https://doi.org/10.1007/s00348-010-0901-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berger, H., R. Langland, C. S. Velden, C. A. Reynolds, and P. M. Pauley, 2011: Impact of enhanced satellite-derived atmospheric motion vector observations on numerical tropical track forecasts in the western North Pacific during TPARC/TCS-08. J. Appl. Meteor. Climatol., 50, 23092318, https://doi.org/10.1175/JAMC-D-11-019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bessho, K., and Coauthors, 2016: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151183, https://doi.org/10.2151/jmsj.2016-009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borde, R., M. Doutriaux-Boucher, G. Dew, and M. Carranza, 2014: A direct link between feature tracking and height assignment of operational EUMETSAT atmospheric motion vectors. J. Atmos. Oceanic Technol., 31, 3346, https://doi.org/10.1175/JTECH-D-13-00126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bresky, W. C., J. M. Daniels, A. A. Bailey, and S. T. Wanzong, 2012: New methods toward minimizing the slow speed bias associated with atmospheric motion vectors. J. Appl. Meteor. Climatol., 51, 21372151, https://doi.org/10.1175/JAMC-D-11-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, K. A., and P. L. F. Liu, 1998: Velocity, acceleration and vorticity under a breaking wave. Phys. Fluids, 10, 327329, https://doi.org/10.1063/1.869544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, K. A., and P. L. F. Liu, 1999: Experimental investigation of turbulence generated by breaking waves in water of intermediate depth. Phys. Fluids, 11, 33903400, https://doi.org/10.1063/1.870198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deb, S. K., S. Wanzong, C. S. Velden, I. Kaur, C. M. Kishtawal, P. K. Pal, and W. P. Menzel, 2014: Height assignment improvement in Kalpana-1 atmospheric motion vectors. Photonirvachak, 42, 679687.

    • Search Google Scholar
    • Export Citation
  • Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797, https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Endlich, R. M., and D. E. Wolf, 1981: Automatic cloud tracking applied to GOES and METEOSAT observations. J. Appl. Meteor., 20, 309319, https://doi.org/10.1175/1520-0450(1981)020<0309:ACTATG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Endlich, R. M., D. E. Wolf, D. J. Hall, and A. E. Brain, 1971: Use of a pattern recognition technique for determining cloud motions from sequences of satellite photographs. J. Appl. Meteor., 10, 105117, https://doi.org/10.1175/1520-0450(1971)010<0105:UOAPRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritz, S., and J. S. Winston, 1962: Synoptic use of radiation measurements from satellite TIROS II. Mon. Wea. Rev., 90, 19, https://doi.org/10.1175/1520-0493(1962)090<0001:SUORMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T., 1968: Present status of cloud velocity computations from ATS-1 and ATS-3. Space Res., 9, 557570.

  • Gelaro, R., D. Merkova, and K. S. Tai, 2012: The impact of satellite atmospheric motion vectors in the GMAO GEOS-5 Global Data Assimilation System. Fifth Workshop on the Impact of Various Observing Systems on Numerical Weather Prediction, Sedona, AZ, WMO, https://www.ssec.wisc.edu/meetings/daos/DAOS5_Day1/Gelaro_5_3.pdf.

  • Genkova, I., R. Borde, J. Schmetz, K. Holmlund, J. Daniels, and C. Velden, 2008: Global Atmospheric Motion Vector Inter-Comparison Study. Proc. Ninth Int. Wind Workshop, Annapolis, MD, EUMETSAT, https://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_CONF_P51_S4_20_GENKOVA_V&RevisionSelectionMethod=LatestReleased&Rendition=Web.

  • Goerss, J. S., 2009: Impact of satellite observations on the tropical cyclone track forecasts of the Navy Operational Global Atmospheric Prediction System. Mon. Wea. Rev., 137, 4150, https://doi.org/10.1175/2008MWR2601.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmlund, K., 1998: The utilization of statistical properties of satellite-derived atmospheric motion vectors to derive quality indicators. Wea. Forecasting, 13, 10931104, https://doi.org/10.1175/1520-0434(1998)013<1093:TUOSPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmlund, K., C. S. Velden, and M. Rohn, 2001: Enhanced automated quality control applied to high-density satellite-derived winds. Mon. Wea. Rev., 129, 517529, https://doi.org/10.1175/1520-0493(2001)129<0517:EAQCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsiao, L. F., and Coauthors, 2015: Blending of global and regional analyses with a spatial filter: Application to typhoon prediction over the western North Pacific Ocean. Wea. Forecasting, 30, 754770, https://doi.org/10.1175/WAF-D-14-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, J. T., P. L. MacKeen, A. Witt, E. D. W. Mitchell, G. J. Stumpf, M. D. Eilts, and K. W. Thomas, 1998: The Storm Cell Identification and Tracking Algorithm: An enhanced WSR-88D algorithm. Wea. Forecasting, 13, 263276, https://doi.org/10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, J., J. Le Marshall, J. Daniels, and L. P. Riishojgaard, 2010: Investigating height assignment type error in the NCEP Global Forecasting System. Proc. 10th Int. Wind Workshop, Tokyo, Japan, EUMETSAT, https://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_CONF_P56_S3_04_JUNG_V&RevisionSelectionMethod=LatestReleased&Rendition=Web.

  • Langland, R. H., C. Velden, P. M. Pauley, and H. Berger, 2009: Impact of satellite-derived rapid-scan wind observations on numerical model forecasts of Hurricane Katrina. Mon. Wea. Rev., 137, 16151622, https://doi.org/10.1175/2008MWR2627.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laskari, A., R. de Kat, and B. Ganapathisubramani, 2016: Full-field pressure from snapshot and time-resolved volumetric PIV. Exp. Fluids, 57, https://doi.org/10.1007/s00348-016-2129-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leese, J. A., C. S. Novak, and B. B. Clark, 1971: An automated technique for obtaining cloud motion from geosynchronous satellite data using cross correlation. J. Appl. Meteor., 10, 118132, https://doi.org/10.1175/1520-0450(1971)010<0118:AATFOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Marshall, J., and Coauthors, 2017: Himawari-8 atmospheric motion vectors—Operational generation and assimilation. J. South. Hemisphere Earth Syst. Sci., 67, 1224, https://doi.org/10.22499/3.6701.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., 2001: Cloud tracking with satellite imagery: From the pioneering work of Ted Fujita to the present. Bull. Amer. Meteor. Soc., 82, 3348, https://doi.org/10.1175/1520-0477(2001)082<0033:CTWSIF>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., W. L. Smith, and T. R. Stewart, 1983: Improved cloud motion wind vector and altitude assignment using VAS. J. Climate Appl. Meteor., 22, 377384, https://doi.org/10.1175/1520-0450(1983)022<0377:ICMWVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, N., and K.-A. Chang, 2003: Introduction to MPIV. User Reference Manual, 14 pp., http://www.oceanwave.jp/softwares/mpiv.

  • Nieman, S. J., J. Schmetz, and W. P. Menzel, 1993: A comparison of several techniques to assign heights to cloud tracers. J. Appl. Meteor., 32, 15591568, https://doi.org/10.1175/1520-0450(1993)032<1559:ACOSTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieman, S. J., W. P. Menzel, C. M. Hayden, D. Gray, S. Wanzong, C. S. Velden, and J. Daniels, 1997: Fully automated cloud-drift winds in NESDIS operations. Bull. Amer. Meteor. Soc., 78, 11211134, https://doi.org/10.1175/1520-0477(1997)078<1121:FACDWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paltridge, G. W., and C. M. R. Platt, 1976: Radiative Processes in Meteorology and Climatology. Elsevier, 318 pp.

  • Raffel, M., C. E. Willert, F. Scarano, C. J. Kähler, S. T. Wereley, and J. Kompenhans, 2018: Particle Image Velocimetry: A Practical Guide. 3rd ed. Springer-Verlag, 669 pp.

    • Crossref
    • Export Citation
  • Ryu, Y., K. A. Chang, and H. J. Lim, 2005: Use of bubble image velocimetry for measurement of plunging wave impinging on structure and associated greenwater. Meas. Sci. Technol., 16, 19451953, https://doi.org/10.1088/0957-0233/16/10/009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., https://doi.org/10.5065/D6DZ069T.

    • Crossref
    • Export Citation
  • Smith, E. A., and D. R. Phillips, 1972: Automated cloud tracking using precisely aligned digital ATS pictures. IEEE Trans. Comput., C-21, 715729, https://doi.org/10.1109/T-C.1972.223574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sudhakar, S., N. Karthikeyan, and S. A. Kumar, 2017: Experimental investigation on the near flow field of dual stream nozzles. J. Phys. Conf. Ser., 822, 012004, https://doi.org/10.1088/1742-6596/822/1/012004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szejwach, G., 1982: Determination of semi-transparent cirrus cloud temperature from infrared radiances: Application to METEOSAT. J. Appl. Meteor., 21, 384393, https://doi.org/10.1175/1520-0450(1982)021<0384:DOSTCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theunissen, R., F. Scarano, and M. L. Riethmuller, 2007: An adaptive sampling and windowing interrogation method in PIV. Meas. Sci. Technol., 18, 275287, https://doi.org/10.1088/0957-0233/18/1/034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theunissen, R., F. Scarano, and M. L. Riethmuller, 2008: On improvement of PIV image interrogation near stationary interfaces. Exp. Fluids, 45, 557572, https://doi.org/10.1007/s00348-008-0481-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theunissen, R., F. Scarano, and M. L. Riethmuller, 2010: Spatially adaptive PIV interrogation based on data ensemble. Exp. Fluids, 48, 875887, https://doi.org/10.1007/s00348-009-0782-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vega-Riveros, J. F., and K. Jabbour, 1989: Review of motion analysis techniques. IEE Proc., I, 136, 397404, https://doi.org/10.1049/ip-i-2.1989.0060.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., C. M. Hayden, S. J. Nieman, W. P. Menzel, S. Wanzong, and J. S. Goerss, 1997: Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bull. Amer. Meteor. Soc., 78, 173195, https://doi.org/10.1175/1520-0477(1997)078<0173:UTWDFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., W. E. Lewis, W. Bresky, D. Stettner, J. Daniels, and S. Wanzong, 2017: Assimilation of high-resolution satellite-derived atmospheric motion vectors: Impact on HWRF forecasts of tropical cyclone track and intensity. Mon. Wea. Rev., 145, 11071125, https://doi.org/10.1175/MWR-D-16-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wereley, S. T., and C. D. Meinhart, 2010: Recent advances in micro-particle image velocimetry. Annu. Rev. Fluid Mech., 42, 557576, https://doi.org/10.1146/annurev-fluid-121108-145427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wieneke, B., and K. Pfeiffer, 2010: Adaptive PIV with variable interrogation window size and shape. 15th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics Lisbon, Portugal, Lisbon Symposia, http://ltces.dem.ist.utl.pt/lxlaser/lxlaser2010/upload/1845_qkuqls_1.12.3.Full_1845.pdf.

  • Wolf, D. E., D. J. Hall, and R. M. Endlich, 1977: Experiments in automatic cloud tracking using SMS-GOES data. J. Appl. Meteor., 16, 12191230, https://doi.org/10.1175/1520-0450(1977)016<1219:EIACTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Q., H.-Q. Wang, Y.-J. Lin, Y.-Z. Zhuang, and Y. Zhang, 2016: Deriving AMVs from geostationary satellite images using optical flow algorithm based on polynomial expansion. J. Atmos. Oceanic Technol., 33, 17271747, https://doi.org/10.1175/JTECH-D-16-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, T.-C., C. S. Velden, S. J. Majumdar, H. Liu, and J. L. Anderson, 2015: Understanding the influence of assimilating subsets of enhanced atmospheric motion vectors on numerical analyses and forecasts of tropical cyclone track and intensity with an ensemble Kalman filter. Mon. Wea. Rev., 143, 25062531, https://doi.org/10.1175/MWR-D-14-00220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, K. K., and J. L. Xu, 2016: Adaptive PIV algorithm based on seeding density and velocity information. Flow Meas. Instrum., 51, 2129, https://doi.org/10.1016/j.flowmeasinst.2016.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 595 186 12
PDF Downloads 549 159 8

Atmospheric Motion Vectors Derived from an Infrared Window Channel of a Geostationary Satellite Using Particle Image Velocimetry

Wei-Liang ChuangZachry Department of Civil Engineering, Texas A&M University, College Station, Texas

Search for other papers by Wei-Liang Chuang in
Current site
Google Scholar
PubMed
Close
,
Chien-Ben ChouTelecommunications and Radar Division, Central Weather Bureau, Taipei, Taiwan

Search for other papers by Chien-Ben Chou in
Current site
Google Scholar
PubMed
Close
,
Kuang-An ChangZachry Department of Civil Engineering, and Department of Ocean Engineering, Texas A&M University, College Station, Texas

Search for other papers by Kuang-An Chang in
Current site
Google Scholar
PubMed
Close
,
Yu-Cheng ChangTelecommunications and Radar Division, Central Weather Bureau, Taipei, Taiwan

Search for other papers by Yu-Cheng Chang in
Current site
Google Scholar
PubMed
Close
, and
Hsin-Lung ChinTelecommunications and Radar Division, Central Weather Bureau, Taipei, Taiwan

Search for other papers by Hsin-Lung Chin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

As the new-generation geostationary satellite Himawari-8 provides a greater frequency and more observation channels than its predecessor, the Multifunctional Transport Satellite series (e.g., MTSAT-2), an opportunity arises to generate atmospheric motion vectors (AMVs) with an increased accuracy and extensive distribution over eastern Asia. In this work AMVs were derived from consecutive images of an infrared-window channel (IR1) of the Himawari-8 satellite using particle image velocimetry (PIV) based on the theory of cross-correlation schemes. A multipass scheme and an adaptive interrogation scheme were also employed to increase spatial resolution and accuracy. For height assignment, an infrared-window method was applied for opaque cloud, while an H2O-intercept method was employed for semitransparent cloud. Validation was conducted by comparing the PIV-derived AMVs with wind fields obtained from NWP analysis, radiosonde observations, and the operational system from the Meteorological Satellite Center (MSC) of the Japan Meteorological Agency (JMA) or JMA/MSC. The comparison of wind velocity maps with the NWP data shows that the PIV-derived AMVs are capable of quantitatively depicting full-field wind field maps and strong jets in atmospheric circulation. Through comparisons with radiosonde observations, the root-mean-square error and wind speed bias (4.29 and −1.05 m s−1) of the PIV-derived AMVs are comparable to, although slightly greater than, that of the NWP data (3.88 and −0.26 m s−1). Based on comparison between the PIV-derived AMVs and wind fields obtained from the JMA/MSC operational system, the PIV-derived AMVs are again comparable, producing a slightly lower error but a larger wind speed bias (−1.05 vs 0.20 m s−1). This also implies that a better height assignment algorithm is necessary.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kuang-An Chang, kchang@tamu.edu

Abstract

As the new-generation geostationary satellite Himawari-8 provides a greater frequency and more observation channels than its predecessor, the Multifunctional Transport Satellite series (e.g., MTSAT-2), an opportunity arises to generate atmospheric motion vectors (AMVs) with an increased accuracy and extensive distribution over eastern Asia. In this work AMVs were derived from consecutive images of an infrared-window channel (IR1) of the Himawari-8 satellite using particle image velocimetry (PIV) based on the theory of cross-correlation schemes. A multipass scheme and an adaptive interrogation scheme were also employed to increase spatial resolution and accuracy. For height assignment, an infrared-window method was applied for opaque cloud, while an H2O-intercept method was employed for semitransparent cloud. Validation was conducted by comparing the PIV-derived AMVs with wind fields obtained from NWP analysis, radiosonde observations, and the operational system from the Meteorological Satellite Center (MSC) of the Japan Meteorological Agency (JMA) or JMA/MSC. The comparison of wind velocity maps with the NWP data shows that the PIV-derived AMVs are capable of quantitatively depicting full-field wind field maps and strong jets in atmospheric circulation. Through comparisons with radiosonde observations, the root-mean-square error and wind speed bias (4.29 and −1.05 m s−1) of the PIV-derived AMVs are comparable to, although slightly greater than, that of the NWP data (3.88 and −0.26 m s−1). Based on comparison between the PIV-derived AMVs and wind fields obtained from the JMA/MSC operational system, the PIV-derived AMVs are again comparable, producing a slightly lower error but a larger wind speed bias (−1.05 vs 0.20 m s−1). This also implies that a better height assignment algorithm is necessary.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kuang-An Chang, kchang@tamu.edu
Save