• Auer, A. H., and J. D. Marwitz, 1972: Hail in the vicinity of organized updrafts. J. Appl. Meteor., 11, 748752, https://doi.org/10.1175/1520-0450(1972)011<0748:HITVOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bashkirova, G. M., and T. A. Pershina, 1964: O masse snezhinok iskorosti ikh padeniya. (On the mass of snow crystals and their fall velocity). Trans. Main Geophys. Obs., 165, 83101.

    • Search Google Scholar
    • Export Citation
  • Braham, R. R., 1963: Some measurements of snow pellet bulk-densities. J. Appl. Meteor., 2, 498500, https://doi.org/10.1175/1520-0450(1963)002<0498:SMOSPB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and C. B. Blankenship, 2012: Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Climate, 25, 687703, https://doi.org/10.1175/JCLI-D-11-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., Jr., 1977: The climatology of hail in North America. Hail: A Review of Hail Science and Hail Suppression, Meteor. Monogr., No. 38, Amer. Meteor. Soc., 107–128.

    • Crossref
    • Export Citation
  • Cheng, L., M. English, and R. Wong, 1985: Hailstone size distributions and their relationship to storm thermodynamics. J. Climate Appl. Meteor., 24, 10591067, https://doi.org/10.1175/1520-0450(1985)024<1059:HSDATR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, C., and E. W. McCaul, 2006: The sensitivity of simulated convective storms to variations in prescribed single-moment microphysics parameters that describe particle distributions, sizes, and numbers. Mon. Wea. Rev., 134, 25472565, https://doi.org/10.1175/MWR3195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Court, A., and J. F. Griffiths, 1986: Thunderstorm climatology. Thunderstorm Morphology and Dynamics, Ed Kessler, Ed., University of Oklahoma Press, 9–34.

  • Detwiler, A., J. Scannell, D. Kliche, and S. Williams, 2012: Creating the long-term T-28 instrumented research aircraft data archive. Bull. Amer. Meteor. Soc., 93, 18171820, https://doi.org/10.1175/BAMS-D-11-00066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Federer, B., and A. Waldvogel, 1975: Hail and raindrop size distributions from a Swiss multicell storm. J. Appl. Meteor., 14, 9197, https://doi.org/10.1175/1520-0450(1975)014<0091:HARSDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrier, B., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, https://doi.org/10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 13571371, https://doi.org/10.1175/JTECH1922.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2007: Snow size distribution parameterization for midlatitude and tropical ice clouds. J. Atmos. Sci., 64, 43464365, https://doi.org/10.1175/2007JAS2344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraile, R., J. L. Sánchez, J. L. de la Madrid, A. Castro, and J. L. Marcos, 1999: Some results from the hailpad network in Leon (Spain): Noteworthy correlations among hailfall parameters. Theor. Appl. Climatol., 64, 105117, https://doi.org/10.1007/s007040050115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. Mon. Wea. Rev., 132, 18971916, https://doi.org/10.1175/1520-0493(2004)132<1897:PAESIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1978: The characteristics of graupel particles in northeastern Colorado cumulus congestus clouds. J. Atmos. Sci., 35, 284295, https://doi.org/10.1175/1520-0469(1978)035<0284:TCOGPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and D. J. Musil, 1982: Case study of a hailstorm in Colorado. Part II: Particle growth processes at mid-levels deduced from in-situ measurements. J. Atmos. Sci., 39, 28472866, https://doi.org/10.1175/1520-0469(1982)039<2847:CSOAHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., M. Szakáll, A. Jost, I. Giammanco, and R. Wright, 2018: A comprehensive observational study of graupel and hail terminal velocity, mass flux, and kinetic energy. J. Atmos. Sci., 75, 38613885, https://doi.org/10.1175/JAS-D-18-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Honomichl, S. B., 2011: Climatologies of convective flight environments for use in the development of a storm penetrating aircraft. M.S. thesis, Dept. of Atmospheric and Environmental Sciences, South Dakota School of Mines and Technology, 181 pp.

  • Honomichl, S. B., A. G. Detwiler, and P. L. Smith, 2013: Observed hazards to aircraft in deep summertime convective clouds from 4–7 km. J. Aircr., 50, 926935, https://doi.org/10.2514/1.C032057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., and R. C. Srivastava, 1978: Dual-wavelength Doppler radar observations of hail at vertical incidence. J. Appl. Meteor., 17, 16941703, https://doi.org/10.1175/1520-0450(1978)017<1694:DWDROO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. N., and P. L. Smith Jr., 1980: Meteorological instrumentation system on the T-28 thunderstorm research aircraft. Bull. Amer. Meteor. Soc., 61, 972979, https://doi.org/10.1175/1520-0477(1980)061<0972:MISOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, C. A., W. A. Cooper, D. W. Breed, I. R. Paluch, P. L. Smith, and G. Vali, 1982: Microphysics. Hailstorms of the Central High Plains, Vol 1: The National Hail Research Experiment, C. A. Knight and P. Squires, Eds., Colorado Associated University Press, 151–193.

  • Knight, N. C., and A. J. Heymsfield, 1983: Measurement and interpretation of hailstone density and terminal velocity. J. Atmos. Sci., 40, 15101516, https://doi.org/10.1175/1520-0469(1983)040<1510:MAIOHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 20422060, https://doi.org/10.1175/JAS-D-11-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, G., I. Zawadzki, W. Szyrmer, D. Sempere-Torres, and R. Uijlenhoet, 2004: A general approach to double-moment normalization of drop size distributions. J. Appl. Meteor., 43, 264281, https://doi.org/10.1175/1520-0450(2004)043<0264:AGATDN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • List, R., 1985: Properties and growth of hailstones. Thunderstorms: A Social, Scientific and Technological Documentary, Vol. 2, Thunderstorm Morphology and Dynamics, E. Kessler, Ed., 2nd ed., University of Oklahoma Press, 250–275.

  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, https://doi.org/10.1029/JC079i015p02185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loftus, A. M., W. R. Cotton, and G. G. Carrió, 2014: A triple-moment hail bulk microphysics scheme. Part I: Description and initial evaluation. Atmos. Res., 149, 3557, https://doi.org/10.1016/j.atmosres.2014.05.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and W. D. Rust, 1998. The Electrical Nature of Storms. Oxford University Press, 422 pp.

  • Macklin, W. C., E. Strauch, and F. H. Ludlam, 1960: The density of hailstones collected from a summer storm. Nubila, 3, 1217.

  • Magono, C., 1953: On the growth of snowflakes and graupel. Yokohama National University Science Rep., Series I, No. 2, 18–40.

  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, https://doi.org/10.1175/JAS3534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morgan, G. M., 1982: Precipitation at the ground. Hailstorms of the Central High Plains, Vol. 1, Case Studies of the National Hail Research Experiment, C. A. Knight and P. Squires, Eds., Colorado Associated University Press, 59–79.

  • Morgan, G. M., and P. W. Summers, 1986: Hailfall and hailstorm characteristics. Thunderstorm Morphology and Dynamics, E. Kessler, Ed., University of Oklahoma Press, 237–258.

  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musil, D. J., E. L. May, P. L. Smith, and W. R. Sand, 1976: Structure of an evolving hailstorm. Part IV: Internal structure from a penetrating aircraft. Mon. Wea. Rev., 104, 596602, https://doi.org/10.1175/1520-0493(1976)104<0596:SOAEHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musil, D. J., S. A. Christopher, R. A. Deola, and P. L. Smith, 1991: Some interior observations of southeastern Montana hailstorms. J. Appl. Meteor., 30, 15961612, https://doi.org/10.1175/1520-0450(1991)030<1596:SIOOSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ni, X., C. Liu, Q. Zhang, and D. J. Cecil, 2016: Properties of hail storms over China and the United States from the Tropical Rainfall Measuring Mission. J. Geophys. Res. Atmos., 121, 12 03112 044, https://doi.org/10.1002/2016JD025600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, B. A., D. J. Musil, and P. L. Smith, 1991: Computerized reduction of airborne foil impactor data. J. Atmos. Oceanic Technol., 8, 691696, https://doi.org/10.1175/1520-0426(1991)008<0691:CROAFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prodi, F., 1970: Measurements of local density in artificial and natural hailstones. J. Appl. Meteor., 9, 903910, https://doi.org/10.1175/1520-0450(1970)009<0903:MOLDIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sekhon, R. S., and R. C. Srivastava, 1971: Doppler radar observations of drop-size distributions in a thunderstorm. J. Atmos. Sci., 28, 983994, https://doi.org/10.1175/1520-0469(1971)028<0983:DROODS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. L., and D. C. Jansen, 1982: Observations inside SESAME thunderstorms with an airborne hail spectrometer. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 16–19.

  • Smith, P. L., and D. V. Kliche, 2005: The bias in moment estimators for parameters of drop size distribution functions: Sampling from exponential distributions. J. Appl. Meteor., 44, 11951205, https://doi.org/10.1175/JAM2258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. L., D. J. Musil, S. F. Weber, J. F. Spahn, G. N. Johnson, and W. R. Sand, 1976: Raindrop and hailstone size distributions inside hailstorms. Preprints, Int. Conf. on Clouds Physics, Boulder, CO, Amer. Meteor. Soc., 252–257.

  • Spahn, J. F., and P. L. Smith, 1976: Some characteristics of hailstone size distributions inside hailstorms. Preprints, 17th Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 187–191.

  • Stratton, R. A., and Coauthors, 2018: A pan-African convection-permitting regional climate simulation with the Met Office Unified Model: CP4-Africa. J. Climate, 31, 34853508, https://doi.org/10.1175/JCLI-D-17-0503.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. K. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, L., G. M. Heymsfield, L. Li, A. J. Heymsfield, A. Bansemer, C. H. Twohy, and R. C. Srivastava, 2010: A study of cirrus ice particle size distribution using TC4 observations. J. Atmos. Sci., 67, 195216, https://doi.org/10.1175/2009JAS3114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 1982: Hail parameter relations: A comprehensive digest. J. Appl. Meteor., 21, 2243, https://doi.org/10.1175/1520-0450(1982)021<0022:HPRACD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van den Heever, S. C., and W. R. Cotton, 2004: The impact of hail size on simulated supercell storms. J. Atmos. Sci., 61, 15961609, https://doi.org/10.1175/1520-0469(2004)061<1596:TIOHSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., A. M. Vogelmann, H. Morrison, and J. A. Milbrandt, 2012: Sensitivity of idealized squall-line simulations to the level of complexity used in two-moment bulk microphysics schemes. Mon. Wea. Rev., 140, 18831907, https://doi.org/10.1175/MWR-D-11-00120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vittori, O., and G. Di Caporiacco, 1959: The density of hailstones. Nubila, 2, 5157.

  • Vivekanandan, J., G. Zhang, and E. Brandes, 2004: Polarimetric radar estimators based on a constrained gamma drop size distribution model. J. Appl. Meteor., 43, 217230, https://doi.org/10.1175/1520-0450(2004)043<0217:PREBOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wainwright, C. E., D. T. Dawson, M. Xue, and G. Zhang, 2014: Diagnosing the intercept parameters of the exponential drop size distributions in a single-moment microphysics scheme and impact on supercell storm simulations. J. Appl. Meteor. Climatol., 53, 20722090, https://doi.org/10.1175/JAMC-D-13-0251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, R. K., N. Chidambaram, L. Cheng, and M. English, 1988: The sampling variations of hailstone size distributions. J. Appl. Meteor., 27, 254260, https://doi.org/10.1175/1520-0450(1988)027<0254:TSVOHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang G., M. Xue, Q. Cao, and D. Dawson, 2008: Diagnosing the intercept parameter for exponential raindrop size distribution based on video disdrometer observations: Model development. J. Appl. Meteor. Climatol., 47, 29832992, https://doi.org/10.1175/2008JAMC1876.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zikmunda, J., and G. Vali, 1972: Fall patterns and fall velocities of rimed ice crystals. J. Atmos. Sci., 29, 13341347, https://doi.org/10.1175/1520-0469(1972)029<1334:FPAFVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 720 240 18
PDF Downloads 676 259 14

Normalized Hail Particle Size Distributions from the T-28 Storm-Penetrating Aircraft

Paul R. FieldMet Office, Exeter, and Institute for Climate and Atmospheric Science, University of Leeds, Leeds, United Kingdom

Search for other papers by Paul R. Field in
Current site
Google Scholar
PubMed
Close
,
Andrew J. HeymsfieldNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew J. Heymsfield in
Current site
Google Scholar
PubMed
Close
,
Andrew G. DetwilerDepartment of Physics, and Atmospheric and Environmental Sciences Program, South Dakota School of Mines and Technology, Rapid City, South Dakota

Search for other papers by Andrew G. Detwiler in
Current site
Google Scholar
PubMed
Close
, and
Jonathan M. WilkinsonMet Office, Exeter, United Kingdom

Search for other papers by Jonathan M. Wilkinson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Hail and graupel are linked to lightning production and are important components of cloud evolution. Hail can also cause significant damage when it precipitates to the surface. The accurate prediction of the amount and location of hail and graupel and the effects on the other hydrometeor species depends upon the size distribution assumed. Here, we use ~310 km of in situ observations from flights of the South Dakota School of Mines and Technology T-28 storm-penetrating aircraft to constrain the representation of the particle size distribution (PSD) of hail. The maximum ~1-km hail water content encountered was 9 g m−3. Optical probe PSD measurements are normalized using two-moment normalization relations to obtain an underlying exponential shape. By linking the two normalizing moments through a power law, a parameterization of the hail PSD is provided based on the hail water content only. Preliminary numerical weather simulations indicate that the new parameterization produces increased radar reflectivity relative to commonly used PSD representations.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paul Field, paul.field@metoffice.gov.uk

Abstract

Hail and graupel are linked to lightning production and are important components of cloud evolution. Hail can also cause significant damage when it precipitates to the surface. The accurate prediction of the amount and location of hail and graupel and the effects on the other hydrometeor species depends upon the size distribution assumed. Here, we use ~310 km of in situ observations from flights of the South Dakota School of Mines and Technology T-28 storm-penetrating aircraft to constrain the representation of the particle size distribution (PSD) of hail. The maximum ~1-km hail water content encountered was 9 g m−3. Optical probe PSD measurements are normalized using two-moment normalization relations to obtain an underlying exponential shape. By linking the two normalizing moments through a power law, a parameterization of the hail PSD is provided based on the hail water content only. Preliminary numerical weather simulations indicate that the new parameterization produces increased radar reflectivity relative to commonly used PSD representations.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paul Field, paul.field@metoffice.gov.uk
Save