• Agee, E. M., 2014: A revised tornado definition and changes in tornado taxonomy. Wea. Forecasting, 29, 12561258, https://doi.org/10.1175/WAF-D-14-00058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agee, E. M., and S. Childs, 2014: Adjustments in tornado counts, f-scale intensity, and path width for assessing significant tornado destruction. J. Appl. Meteor. Climatol., 53, 14941505, https://doi.org/10.1175/JAMC-D-13-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015: Influence of the El Niño/Southern Oscillation on tornado and hail frequency in the United States. Nat. Geosci., 8, 278283, https://doi.org/10.1038/ngeo2385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blair, S. F., and E. P. Lunde, 2010: Tornadoes impacting interstates: Service and societal considerations. Electron. J. Severe Storms Meteor., 5 (4), http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/64/73.

    • Search Google Scholar
    • Export Citation
  • Bodine, D. J., T. Maruyama, R. D. Palmer, C. J. Fulton, H. B. Bluestein, and D. C. Lewellen, 2016: Sensitivity of tornado dynamics to soil debris loading. J. Atmos. Sci., 73, 27832801, https://doi.org/10.1175/JAS-D-15-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., A. Seimon, K. D. LaPenta, and M. J. Dickinson, 2006: Supercell tornadogenesis over complex terrain: The Great Barrington, Massachusetts, tornado on 29 may 1995. Wea. Forecasting, 21, 897922, https://doi.org/10.1175/WAF957.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, 2007: Small sample size and data quality issues illustrated using tornado occurrence data. Electron. J. Severe Storms Meteor., 2 (5), http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/26/27.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and D. W. Burgess, 1988: On some issues of United States tornado climatology. Mon. Wea. Rev., 116, 495501, https://doi.org/10.1175/1520-0493(1988)116<0495:OSIOUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., L. E. Michaels, K. N. Scheitlin, and I. J. Elsner, 2013: The decreasing population bias in tornado reports across the central plains. Wea. Climate Soc., 5, 221232, https://doi.org/10.1175/WCAS-D-12-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and Coauthors, 2016: The relationship between elevation roughness and tornado activity: A spatial statistical model fit to data from the central Great Plains. J. Appl. Meteor. Climatol., 55, 849859, https://doi.org/10.1175/JAMC-D-15-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallimore, R., and H. Lettau, 1970: Topographic influence on tornado tracks and frequencies in Wisconsin and Arkansas. Trans. Wis. Acad. Sci. Arts Lett., 58, 101127.

    • Search Google Scholar
    • Export Citation
  • Grams, J. S., R. L. Thompson, D. V. Snively, J. A. Prentice, G. M. Hodges, and L. J. Reames, 2012: A climatology and comparison of parameters for significant tornado events in the United States. Wea. Forecasting, 27, 106123, https://doi.org/10.1175/WAF-D-11-00008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homar, V., M. Gaya, R. Romero, C. Ramis, and S. Alonso, 2003: Tornadoes over complex terrain: An analysis of the 28th august 1999 tornadic event in eastern Spain. Atmos. Res., 67, 301317, https://doi.org/10.1016/S0169-8095(03)00064-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jagger, T. H., J. B. Elsner, and H. M. Widen, 2015: A statistical model for regional tornado climate studies. PLOS ONE, 10 (8), e0131876, https://doi.org/10.1371/journal.pone.0131876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karpman, D., M. A. Ferreira, and C. K. Wikle, 2013: A point process model for tornado report climatology. Stat, 2, 18, https://doi.org/10.1002/sta4.14.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., and Coauthors, 2014: Meteorological overview of the devastating 27 April 2011 tornado outbreak. Bull. Amer. Meteor. Soc., 95, 10411062, https://doi.org/10.1175/BAMS-D-11-00229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaPenta, K. D., L. F. Bosart, T. J. Galarneau Jr., and M. J. Dickinson, 2005: A multiscale examination of the 31 May 1998 Mechanicville, New York, tornado. Wea. Forecasting, 20, 494516, https://doi.org/10.1175/WAF875.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, J. R., J. S. Kain, N. Yussouf, D. C. Dowell, D. M. Wheatley, K. H. Knopfmeier, and T. A. Jones, 2018: Advancing from convection-allowing NWP to Warn-on-Forecast: Evidence of progress. Wea. Forecasting, 33, 599607, https://doi.org/10.1175/WAF-D-17-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leslie, F. W., 1977: Surface roughness effects on suction vortex formation: A laboratory simulation. J. Atmos. Sci., 34, 10221027, https://doi.org/10.1175/1520-0469(1977)034<1022:SREOSV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., 2014: Local roughness effects on tornado dynamics. 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 15A.1, https://ams.confex.com/ams/27SLS/webprogram/Manuscript/Paper254357/SLS14_pap_submit.pdf.

  • Lewellen, D. C., B. Gong, and W. Lewellen, 2008: Effects of finescale debris on near-surface tornado dynamics. J. Atmos. Sci., 65, 32473262, https://doi.org/10.1175/2008JAS2686.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and T. B. Terpstra, 1974: The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J. Atmos. Sci., 31, 342, https://doi.org/10.1175/1520-0469(1974)031<0003:TEOMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooney, C. Z., R. D. Duval, and R. Duvall, 1993: Bootstrapping: A Nonparametric Approach to Statistical Inference. Sage, 73 pp.

  • Natarajan, D., 2011: Numerical simulation of tornado-like vortices. Ph.D. thesis, Western University, 144 pp., https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=1153&context=etd.

  • Nelder, J. A., and R. J. Baker, 2004: Generalized linear models. Encyclopedia of Statistical Sciences, Vol. 4, S. Kotz et al., Eds., https://doi.org/10.1002/0471667196.ess0866.

    • Crossref
    • Export Citation
  • Prociv, K. A., 2012: Terrain and landcover effects of the southern Appalachian Mountains on the low-level rotational wind fields of supercell thunderstorms. Ph.D. thesis, Virginia Polytechnic Institute and State University, 87 pp., http://hdl.handle.net/10919/32463.

  • QGIS, 2015: QGIS geographic information system. Open Source Geospatial Foundation Project, https://qgis.org/en/site/.

  • Schneider, D. G., 2009: The impact of terrain on three cases of tornadogenesis in the Great Tennessee Valley. Electron. J. Oper. Meteor., EJ11, http://nwafiles.nwas.org/ej/pdf/2009-EJ11.pdf.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, and C. M. Mead, 2004: An update to the supercell composite and significant tornado parameters. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., P8.1, https://ams.confex.com/ams/pdfpapers/82100.pdf.

  • Tippett, M. K., J. T. Allen, V. A. Gensini, and H. E. Brooks, 2015: Climate and hazardous convective weather. Curr. Climate Change Rep., 1, 6073, https://doi.org/10.1007/s40641-015-0006-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verbout, S. M., H. E. Brooks, L. M. Leslie, and D. M. Schultz, 2006: Evolution of the U.S. tornado database: 1954–2003. Wea. Forecasting, 21, 8693, https://doi.org/10.1175/WAF910.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 445 115 5
PDF Downloads 272 100 4

The Empirical Dependence of Tornadogenesis on Elevation Roughness: Historical Record Analysis Using Bayes’s Law in Arkansas

Zhanxiang HuaDepartment of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana

Search for other papers by Zhanxiang Hua in
Current site
Google Scholar
PubMed
Close
and
Daniel R. ChavasDepartment of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana

Search for other papers by Daniel R. Chavas in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recent research suggests that surface elevation variability may influence tornado activity, though separating this effect from reporting biases is difficult to do in observations. Here we employ Bayes’s law to calculate the empirical joint dependence of tornado probability on population density and elevation roughness in the vicinity of Arkansas for the period 1955–2015. This approach is based purely on data, exploits elevation and population information explicitly in the vicinity of each tornado, and enables an explicit test of the dependence of results on elevation roughness length scale. A simple log-link linear regression fit to this empirical distribution yields an 11% decrease in tornado probability per 10-m increase in elevation roughness at fixed population density for large elevation roughness length scales (15–20 km). This effect increases by at least a factor of 2 moving toward smaller length scales down to 1 km. The elevation effect exhibits no time trend, while the population bias effect decreases systematically in time, consistent with the improvement of reporting practices. Results are robust across time periods and the exclusion of EF1 tornadoes and are consistent with recent county-level and gridded analyses. This work highlights the need for a deeper physical understanding of how elevation heterogeneity affects tornadogenesis and also provides the foundation for a general Bayesian tornado probability model that integrates both meteorological and nonmeteorological parameters.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel R. Chavas, drchavas@gmail.com

Abstract

Recent research suggests that surface elevation variability may influence tornado activity, though separating this effect from reporting biases is difficult to do in observations. Here we employ Bayes’s law to calculate the empirical joint dependence of tornado probability on population density and elevation roughness in the vicinity of Arkansas for the period 1955–2015. This approach is based purely on data, exploits elevation and population information explicitly in the vicinity of each tornado, and enables an explicit test of the dependence of results on elevation roughness length scale. A simple log-link linear regression fit to this empirical distribution yields an 11% decrease in tornado probability per 10-m increase in elevation roughness at fixed population density for large elevation roughness length scales (15–20 km). This effect increases by at least a factor of 2 moving toward smaller length scales down to 1 km. The elevation effect exhibits no time trend, while the population bias effect decreases systematically in time, consistent with the improvement of reporting practices. Results are robust across time periods and the exclusion of EF1 tornadoes and are consistent with recent county-level and gridded analyses. This work highlights the need for a deeper physical understanding of how elevation heterogeneity affects tornadogenesis and also provides the foundation for a general Bayesian tornado probability model that integrates both meteorological and nonmeteorological parameters.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel R. Chavas, drchavas@gmail.com
Save