Regional Decadal Climate Predictions Using an Ensemble of WRF Parameterizations Driven by the MIROC5 GCM

Ehud Strobach Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker, Israel, and Earth System Science Interdisciplinary Center, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, and Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Ehud Strobach in
Current site
Google Scholar
PubMed
Close
and
Golan Bel Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker, and Department of Physics, Ben-Gurion University of the Negev, Beersheba, Israel, and Center for Nonlinear Studies, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Golan Bel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Regional climate models (RCMs) are expected to provide better representations of the climate dynamics because of their higher spatial resolutions. Here, we generated an ensemble of decadal (2006–36) RCM predictions for the area of Israel, which spans a considerable climatic gradient and comprises complex terrain. We used the WRF Model forced by the MIROC5 global climate model (GCM). The ensemble was generated by choosing different combinations of radiation, microphysics, surface layer, and planetary boundary layer parameterizations. The simulation results were compared with meteorological station data for the first simulated decade. For the minimum surface temperature, all the RCM configurations performed better than the driving GCM, while for the maximum surface temperature, only three out of eight configurations improved the predictions. The RCM configurations had higher errors in predicting the precipitation, but four configurations had comparable errors to the GCM. For the next two decades, the ensemble average predicts an increase of 0.51° and 0.40°C decade−1 for the average daily minimum and maximum surface temperatures, respectively. No significant change is predicted in the precipitation. We found that all the parameterizations affect the predictions of the surface temperatures and precipitation [e.g., the CAM radiation scheme simulates colder temperatures than the RRTM for GCMs (RRTMG)] but the PBL and surface layer scheme has the largest effect on the errors. Spectral nudging was found to have a considerable effect on the deviations of the precipitation predicted by the WRF configurations from the predictions of the GCM and a much smaller effect on the surface temperature predictions.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Golan Bel, bel@bgu.ac.il

Abstract

Regional climate models (RCMs) are expected to provide better representations of the climate dynamics because of their higher spatial resolutions. Here, we generated an ensemble of decadal (2006–36) RCM predictions for the area of Israel, which spans a considerable climatic gradient and comprises complex terrain. We used the WRF Model forced by the MIROC5 global climate model (GCM). The ensemble was generated by choosing different combinations of radiation, microphysics, surface layer, and planetary boundary layer parameterizations. The simulation results were compared with meteorological station data for the first simulated decade. For the minimum surface temperature, all the RCM configurations performed better than the driving GCM, while for the maximum surface temperature, only three out of eight configurations improved the predictions. The RCM configurations had higher errors in predicting the precipitation, but four configurations had comparable errors to the GCM. For the next two decades, the ensemble average predicts an increase of 0.51° and 0.40°C decade−1 for the average daily minimum and maximum surface temperatures, respectively. No significant change is predicted in the precipitation. We found that all the parameterizations affect the predictions of the surface temperatures and precipitation [e.g., the CAM radiation scheme simulates colder temperatures than the RRTM for GCMs (RRTMG)] but the PBL and surface layer scheme has the largest effect on the errors. Spectral nudging was found to have a considerable effect on the deviations of the precipitation predicted by the WRF configurations from the predictions of the GCM and a much smaller effect on the surface temperature predictions.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Golan Bel, bel@bgu.ac.il
Save
  • Alpert, P., I. Osetinsky, B. Ziv, and H. Shafir, 2004: Semi-objective classification for daily synoptic systems: Application to the eastern Mediterranean climate change. Int. J. Climatol., 24, 10011011, https://doi.org/10.1002/joc.1036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrys, J., T. J. Lyons, and J. Kala, 2016: Evaluation of a WRF ensemble using GCM boundary conditions to quantify mean and extreme climate for the southwest of Western Australia (1970–1999). Int. J. Climatol., 36, 44064424, https://doi.org/10.1002/joc.4641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banks, R. F., J. Tiana-Alsina, J. M. Baldasano, F. Rocadenbosch, A. Papayannis, S. Solomos, and C. G. Tzanis, 2016: Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign. Atmos. Res., 176–177, 185201, https://doi.org/10.1016/j.atmosres.2016.02.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, E., 2009: The impact of climate change on daily precipitation statistics in Jordan and Israel. Atmos. Sci. Lett., 10, 192200, https://doi.org/10.1002/asl.233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branch, O., K. Warrach-Sagi, V. Wulfmeyer, and S. Cohen, 2014: Simulation of semi-arid biomass plantations and irrigation using the WRF-NOAH model—A comparison with observations from Israel. Hydrol. Earth Syst. Sci., 18, 17611783, https://doi.org/10.5194/hess-18-1761-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., 2010: Climate science: Decadal predictions in demand. Nat. Geosci., 3, 231232, https://doi.org/10.1038/ngeo823.

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chenoweth, J., P. Hadjinicolaou, A. Bruggeman, J. Lelieveld, Z. Levin, M. A. Lange, E. Xoplaki, and M. Hadjikakou, 2011: Impact of climate change on the water resources of the eastern Mediterranean and Middle East region: Modeled 21st century changes and implications. Water Resour. Res., 47, W06506, https://doi.org/10.1029/2010WR010269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., and Coauthors, 2013: An overview of decadal climate predictability in a multi-model ensemble by climate model MIROC. Climate Dyn., 40, 12011222, https://doi.org/10.1007/s00382-012-1351-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., S. M. Cavallo, M. C. Coniglio, and H. E. Brooks, 2015: A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern us cold season severe weather environments. Wea. Forecasting, 30, 591612, https://doi.org/10.1175/WAF-D-14-00105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 214 pp., https://doi.org/10.5065/D63N21CH.

    • Crossref
    • Export Citation
  • Diffenbaugh, N. S., and F. Giorgi, 2012: Climate change hotspots in the CMIP5 global climate model ensemble. Climatic Change, 114, 813822, https://doi.org/10.1007/s10584-012-0570-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., and Coauthors, 2013: Initialized near-term regional climate change prediction. Nat. Commun., 4, 1715, https://doi.org/10.1038/ncomms2704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., S.-Y. Hong, and K.-S. Lim, 2008: A new method for representing mixed-phase particle fall speeds in bulk microphysics parameterizations. J. Meteor. Soc. Japan, 86A, 3344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P., 2009: 21st century climate change in the Middle East. Climatic Change, 92, 417432, https://doi.org/10.1007/s10584-008-9438-5.

  • Evans, J. P., and M. F. McCabe, 2013: Effect of model resolution on a regional climate model simulation over southeast Australia. Climate Res., 56, 131145, https://doi.org/10.3354/cr01151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P., M. Ekström, and F. Ji, 2012: Evaluating the performance of a WRF physics ensemble over south-east Australia. Climate Dyn., 39, 12411258, https://doi.org/10.1007/s00382-011-1244-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fita, L., J. Fernández, and M. García-Díez, 2010: CLWRF: WRF modifications for regional climate simulation under future scenarios. Preprints, 11th WRF Users’ Event, Boulder, CO, NCAR, P-26, https://www.meteo.unican.es/files/pdfs/WRFusers_clwrf.pdf.

  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866, https://doi.org/10.1017/CBO9781107415324.023.

    • Crossref
    • Export Citation
  • Giorgi, F., and L. O. Mearns, 1999: Introduction to special section: Regional climate modeling revisited. J. Geophys. Res., 104, 63356352, https://doi.org/10.1029/98JD02072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and W. J. Gutowski Jr., 2015: Regional dynamical downscaling and the CORDEX initiative. Annu. Rev. Environ. Resour., 40, 467490, https://doi.org/10.1146/annurev-environ-102014-021217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., C. Jones, and G. R. Asrar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175183.

    • Search Google Scholar
    • Export Citation
  • Glisan, J. M., W. J. Gutowski, J. J. Cassano, and M. E. Higgins, 2013: Effects of spectral nudging in WRF on Arctic temperature and precipitation simulations. J. Climate, 26, 39853999, https://doi.org/10.1175/JCLI-D-12-00318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, L., and Coauthors, 2013: A verification framework for interannual-to-decadal predictions experiments. Climate Dyn., 40, 245272, https://doi.org/10.1007/s00382-012-1481-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldreich, Y., 2003: The Climate of Israel: Observation, Research and Application. 1st ed., Springer, 270 pp., https://doi.org/10.1007/978-1-4615-0697-3.

    • Crossref
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107, https://doi.org/10.1175/2009BAMS2607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2016: Connecting climate model projections of global temperature change with the real world. Bull. Amer. Meteor. Soc., 97, 963980, https://doi.org/10.1175/BAMS-D-14-00154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hemming, D., C. Buontempo, E. Burke, M. Collins, and N. Kaye, 2010: How uncertain are climate model projections of water availability indicators across the Middle East? Philos. Trans. Roy. Soc. London, A368, 51175135, https://doi.org/10.1098/rsta.2010.0174.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF Model. J. Appl. Meteor. Climatol., 49, 18311844, https://doi.org/10.1175/2010JAMC2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Israel Meteorological Service, 2011: Summary of 2010 (in Hebrew). IMS Rep., 6 pp., http://www.ims.gov.il/NR/rdonlyres/70D296A4-932B-492E-8071-DEF9459BB0C0/0/sic2010.pdf.

  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johanson, C. M., and Q. Fu, 2009: Hadley cell widening: Model simulations versus observations. J. Climate, 22, 27132725, https://doi.org/10.1175/2008JCLI2620.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453, 8488, https://doi.org/10.1038/nature06921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2012: Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts. Geophys. Res. Lett., 39, L10701, https://doi.org/10.1029/2012GL051644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B., and Coauthors, 2013: Near-term climate change: Projections and predictability. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 953–1028.

  • Lelieveld, J., Y. Proestos, P. Hadjinicolaou, M. Tanarhte, E. Tyrlis, and G. Zittis, 2016: Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Climatic Change, 137, 245260, https://doi.org/10.1007/s10584-016-1665-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., and T. Palmer, 2008: Ensemble forecasting. J. Comput. Phys., 227, 35153539, https://doi.org/10.1016/j.jcp.2007.02.014.

  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S., and X.-Z. Liang, 2010: Observed diurnal cycle climatology of planetary boundary layer height. J. Climate, 23, 57905809, https://doi.org/10.1175/2010JCLI3552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McSweeney, C. F., R. G. Jones, R. W. Lee, and D. P. Rowell, 2015: Selecting CMIP5 GCMs for downscaling over multiple regions. Climate Dyn., 44, 32373260, https://doi.org/10.1007/s00382-014-2418-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2009: Decadal prediction: Can it be skillful? Bull. Amer. Meteor. Soc., 90, 14671485, https://doi.org/10.1175/2009BAMS2778.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2014: Decadal climate prediction: An update from the trenches. Bull. Amer. Meteor. Soc., 95, 243267, https://doi.org/10.1175/BAMS-D-12-00241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104, https://doi.org/10.1029/2003JD004495.

    • Search Google Scholar
    • Export Citation
  • Mochizuki, T., and Coauthors, 2012: Decadal prediction using a recent series of MIROC global climate models. J. Meteor. Soc. Japan, 90A, 373383, https://doi.org/10.2151/jmsj.2012-A22.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, W. A., and Coauthors, 2012: Forecast skill of multi-year seasonal means in the decadal prediction system of the Max Planck Institute for Meteorology. Geophys. Res. Lett., 39, L22707, https://doi.org/10.1029/2012GL053326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, W. A., H. Pohlmann, F. Sienz, and D. Smith, 2014: Decadal climate predictions for the period 1901–2010 with a coupled climate model. Geophys. Res. Lett., 41, 21002107, https://doi.org/10.1002/2014GL059259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCAR, 2011: The NCAR Command Language Version 6.0.0. UCAR/NCAR/CISL/VETS, http://www.ncl.ucar.edu/Document/Functions/ESMF/ESMF_regrid.shtml.

  • Palmer, T., R. Buizza, R. Hagedorn, A. Lawrence, M. Leutbecher, and L. Smith, 2006: Ensemble prediction: A pedagogical perspective. ECMWF Newsletter, No. 106, ECMWF, Reading, United Kingdom, 10–17.

  • Pohlmann, H., J. H. Jungclaus, A. Köhl, D. Stammer, and J. Marotzke, 2009: Initializing decadal climate predictions with the GECCO oceanic synthesis: Effects on the North Atlantic. J. Climate, 22, 39263938, https://doi.org/10.1175/2009JCLI2535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pohlmann, H., and Coauthors, 2013: Improved forecast skill in the tropics in the new MiKlip decadal climate predictions. Geophys. Res. Lett., 40, 57985802, https://doi.org/10.1002/2013GL058051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Que, L.-J., W.-L. Que, and J.-M. Feng, 2016: Intercomparison of different physics schemes in the WRF model over the Asian summer monsoon region. Atmos. Ocean. Sci. Lett., 9, 169177, https://doi.org/10.1080/16742834.2016.1158618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 29492972, https://doi.org/10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, D. M., S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, and J. M. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 796799, https://doi.org/10.1126/science.1139540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spero, T. L., M. J. Otte, J. H. Bowden, and C. G. Nolte, 2014: Improving the representation of clouds, radiation, and precipitation using spectral nudging in the weather research and forecasting model. J. Geophys. Res. Atmos., 119, 11 68211 694, https://doi.org/10.1002/2014JD022173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sportisse, B., 2002: Air Pollution Modelling and Simulation. Springer, 592 pp., https://doi.org/10.1007/978-3-662-04956-3.

    • Crossref
    • Export Citation
  • Strobach, E., and G. Bel, 2015: Improvement of climate predictions and reduction of their uncertainties using learning algorithms. Atmos. Chem. Phys., 15, 86318641, https://doi.org/10.5194/acp-15-8631-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strobach, E., and G. Bel, 2016: Decadal climate predictions using sequential learning algorithms. J. Climate, 29, 37873809, https://doi.org/10.1175/JCLI-D-15-0648.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strobach, E., and G. Bel, 2017a: The contribution of internal and model variabilities to the uncertainty in CMIP5 decadal climate predictions. Climate Dyn., 49, 32213235, https://doi.org/10.1007/s00382-016-3507-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strobach, E., and G. Bel, 2017b: Quantifying the uncertainties in an ensemble of decadal climate predictions. J. Geophys. Res. Atmos., 122, 13 19113 200, https://doi.org/10.1002/2017JD027249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and J. Simpson, 1993: The Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Ocean. Sci., 4, 3572, https://doi.org/10.3319/TAO.1993.4.1.35(A).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tatebe, H., and Coauthors, 2012: The initialization of the MIROC climate models with hydrographic data assimilation for decadal prediction. J. Meteor. Soc. Japan, 90A, 275294, https://doi.org/10.2151/jmsj.2012-A14.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. Roy. Soc. London, A365, 20532075, https://doi.org/10.1098/rsta.2007.2076.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., F. J. D. Reyes, S. S. Drijfhout, and E. Hawkins, 2013: Reliability of regional climate model trends. Environ. Res. Lett., 8, 014055, https://doi.org/10.1088/1748-9326/8/1/014055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 2002: Statistical Analysis in Climate Research. Cambridge University Press, 496 pp.

  • von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 36643673, https://doi.org/10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vukicevic, T., and R. M. Errico, 1990: The influence of artificial and physical factors upon predictability estimates using a complex limited-area model. Mon. Wea. Rev., 118, 14601482, https://doi.org/10.1175/1520-0493(1990)118<1460:TIOAAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waldron, K. M., J. Paegle, and J. D. Horel, 1996: Sensitivity of a spectrally filtered and nudged limited-area model to outer model options. Mon. Wea. Rev., 124, 529547, https://doi.org/10.1175/1520-0493(1996)124<0529:SOASFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, https://doi.org/10.1175/2010JCLI3679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., M. A. Liniger, and C. Appenzeller, 2008: Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? Quart. J. Roy. Meteor. Soc., 134, 241260, https://doi.org/10.1002/qj.210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., and Coauthors, 2009: ENSEMBLES: A new multi-model ensemble for seasonal-to-annual predictions—Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophys. Res. Lett., 36, L21711, https://doi.org/10.1029/2009GL040896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zittis, G., and P. Hadjinicolaou, 2017: The effect of radiation parameterization schemes on surface temperature in regional climate simulations over the MENA-CORDEX domain. Int. J. Climatol., 37, 38473862, https://doi.org/10.1002/joc.4959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zittis, G., P. Hadjinicolaou, and J. Lelieveld, 2014: Comparison of WRF model physics parameterizations over the MENA-CORDEX domain. Amer. J. Climate Change, 3, 490511, https://doi.org/10.4236/ajcc.2014.35042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziv, B., H. Saaroni, R. Pargament, T. Harpaz, and P. Alpert, 2014: Trends in rainfall regime over Israel, 1975–2010, and their relationship to large-scale variability. Reg. Environ. Change, 14, 17511764, https://doi.org/10.1007/s10113-013-0414-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 463 124 17
PDF Downloads 377 110 16