Past and Projected Freezing/Thawing Indices in the Northern Hemisphere

Xiaoqing Peng Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Xiaoqing Peng in
Current site
Google Scholar
PubMed
Close
,
Tingjun Zhang Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Tingjun Zhang in
Current site
Google Scholar
PubMed
Close
,
Yijing Liu Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Yijing Liu in
Current site
Google Scholar
PubMed
Close
, and
Jing Luo State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China

Search for other papers by Jing Luo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Freezing/thawing indices are useful for assessments of climate change, surface and subsurface hydrology, energy balance, moisture balance, carbon exchange, ecosystem diversity and productivity. Current freezing/thawing indices are inadequate to meet these requirements. We use 16 Coupled Model Intercomparison Project phase 5 (CMIP5) models available for 1850–2005, three representative concentration pathways (RCP2.6, RCP4.5, and RCP8.5) during 2006–2100, and Climatic Research Unit gridded observations for 1901–2014, to assess the performance of freezing/thawing indices derived from CMIP5 models during 1901–2005. We also analyzed past spatial patterns of freezing/thawing indices and projected these over three RCPs. Results show that CMIP5 models can reproduce the spatial pattern of freezing/thawing indices in the Northern Hemisphere but that the thawing index slightly underestimated observations and the freezing index slightly overestimated them. The thawing index agreed slightly better with observations than did the freezing index. There is significant spatial variability in the freezing/thawing indices, ranging from 0° to 10 000°C day. Over the entire Northern Hemisphere, the time series of the area-averaged thawing index derived from CMIP5 output increased significantly at about 1.14°C day yr−1 during 1850–2005, 1.51°C day yr−1 for RCP2.6, 5.32°C day yr−1 for RCP4.5, and 13.85°C day yr−1 for RCP8.5 during 2006–2100. The area-averaged freezing index decreased significantly at −1.39°C day yr−1 during 1850–2004, −1.2°C day yr−1 for RCP2.6, −4.3°C day yr−1 for RCP4.5, and −9.8°C day yr−1 for RCP8.5 during 2006–2100. The greatest decreases in the freezing index are projected to occur at high latitudes and high altitudes, where the magnitude of the decreasing rate of the freezing index is far greater than that of the increasing rate of the thawing index.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoqing Peng, pengxq@lzu.edu.cn

Abstract

Freezing/thawing indices are useful for assessments of climate change, surface and subsurface hydrology, energy balance, moisture balance, carbon exchange, ecosystem diversity and productivity. Current freezing/thawing indices are inadequate to meet these requirements. We use 16 Coupled Model Intercomparison Project phase 5 (CMIP5) models available for 1850–2005, three representative concentration pathways (RCP2.6, RCP4.5, and RCP8.5) during 2006–2100, and Climatic Research Unit gridded observations for 1901–2014, to assess the performance of freezing/thawing indices derived from CMIP5 models during 1901–2005. We also analyzed past spatial patterns of freezing/thawing indices and projected these over three RCPs. Results show that CMIP5 models can reproduce the spatial pattern of freezing/thawing indices in the Northern Hemisphere but that the thawing index slightly underestimated observations and the freezing index slightly overestimated them. The thawing index agreed slightly better with observations than did the freezing index. There is significant spatial variability in the freezing/thawing indices, ranging from 0° to 10 000°C day. Over the entire Northern Hemisphere, the time series of the area-averaged thawing index derived from CMIP5 output increased significantly at about 1.14°C day yr−1 during 1850–2005, 1.51°C day yr−1 for RCP2.6, 5.32°C day yr−1 for RCP4.5, and 13.85°C day yr−1 for RCP8.5 during 2006–2100. The area-averaged freezing index decreased significantly at −1.39°C day yr−1 during 1850–2004, −1.2°C day yr−1 for RCP2.6, −4.3°C day yr−1 for RCP4.5, and −9.8°C day yr−1 for RCP8.5 during 2006–2100. The greatest decreases in the freezing index are projected to occur at high latitudes and high altitudes, where the magnitude of the decreasing rate of the freezing index is far greater than that of the increasing rate of the thawing index.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoqing Peng, pengxq@lzu.edu.cn
Save
  • Betts, R. A., C. D. Jones, J. R. Knight R. F. Keeling, and J. J. Kennedy, 2016: El Niño and a record CO2 rise. Nat. Climate Change, 6, 806810, https://doi.org/10.1038/nclimate3063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., and O. W. Frauenfeld, 2014a: A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections. J. Geophys. Res., 119, 57675786, https://doi.org/10.1002/2013JD021190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., and O. W. Frauenfeld, 2014b: Surface air temperature changes over the twentieth and twenty-first centuries in China simulated by 20 CMIP5 models. J. Climate, 27, 39203937, https://doi.org/10.1175/JCLI-D-13-00465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daniel, J. S., J. M. Jacobs, H. Miller, A. Stoner, J. Crowley, M. Khalkhali, and A. Thomas, 2018: Climate change: Potential impacts on frost–thaw conditions and seasonal load restriction timing for low-volume roadways. Road Mater. Pavement Des., 19, 11261146, https://doi.org/10.1080/14680629.2017.1302355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devaraju, N., G. Bala, and A. Modak, 2015: Effects of large-scale deforestation on precipitation in the monsoon regions: Remote versus local effects. Proc. Natl. Acad. Sci. USA, 112, 32573262, https://doi.org/10.1073/pnas.1423439112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elmendorf, S. C., and Coauthors, 2012: Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Climate Change, 2, 453457, https://doi.org/10.1038/nclimate1465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foley, J. A., J. E. Kutzbach, M. T. Coe, and S. Levis, 1994: Feedbacks between climate and boreal forests during the Holocene epoch. Nature, 371, 5254, https://doi.org/10.1038/371052a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frauenfeld, O. W., and T. Zhang, 2011: An observational 71-year history of seasonally frozen ground changes in the Eurasian high latitudes. Environ. Res. Lett., 6, 044024, https://doi.org/10.1088/1748-9326/6/4/044024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frauenfeld, O. W., T. Zhang, R. G. Barry, and D. Gilichinsky, 2004: Interdecadal changes in seasonal freeze and thaw depths in Russia. J. Geophys. Res., 109, D05101, https://doi.org/10.1029/2003JD004245.

    • Search Google Scholar
    • Export Citation
  • Frauenfeld, O. W., T. Zhang, and J. L. McCreight, 2007: Northern Hemisphere freezing/thawing index variations over the twentieth century. Int. J. Climatol., 27, 4763, https://doi.org/10.1002/joc.1372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godínez-Alvarez, H., J. Herrick, M. Mattocks, D. Toledo, and J. Van Zee, 2009: Comparison of three vegetation monitoring methods: Their relative utility for ecological assessment and monitoring. Ecol. Indic., 9, 10011008, https://doi.org/10.1016/j.ecolind.2008.11.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, D., and H. Wang, 2016: CMIP5 permafrost degradation projection: A comparison among different regions. J. Geophys. Res. Atmos., 121, 44994517, https://doi.org/10.1002/2015JD024108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, D., E. Yu, and H. Wang, 2016: Will the Tibetan Plateau warming depend on elevation in the future? J. Geophys. Res. Atmos., 121, 39693978, https://doi.org/10.1002/2016JD024871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, F., S. J. Vavrus, J. E. Kutzbach, W. F. Ruddiman, J. O. Kaplan, and K. M. Krumhardt, 2014: Simulating global and local surface temperature changes due to Holocene anthropogenic land cover change. Geophys. Res. Lett., 41, 623631, https://doi.org/10.1002/2013GL058085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, J., D. J. Moore, S. P. Burns, and R. K. Monson, 2010: Longer growing seasons lead to less carbon sequestration by a subalpine forest. Global Change Biol., 16, 771783, https://doi.org/10.1111/j.1365-2486.2009.01967.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp.

  • Jiang, F.-Q., R. Hu, and Z. Li, 2008: Variations and trends of the freezing and thawing index along the Qinghai-Xizang Railway for 1966–2004. J. Geogr. Sci., 18, 316, https://doi.org/10.1007/s11442-008-0003-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang F.-Q., A.-W. Jilili, S.-P. Wang, R.-J. Hu, and X.-L. Li, 2015: Annual thawing and freezing indices changes in the China Tianshan Mountains. Reg. Environ. Change, 15, 227240, https://doi.org/10.1007/s10113-014-0610-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joetzjer, E., H. Douville, C. Delire, and P. Ciais, 2013: Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3. Climate Dyn., 41, 29212936, https://doi.org/10.1007/s00382-012-1644-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and S. C. Swenson, 2011: Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming. Environ. Res. Lett., 6, 045504, https://doi.org/10.1088/1748-9326/6/4/045504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levis, S., J. A. Foley, and D. Pollard, 2000: Large-scale vegetation feedbacks on a doubled CO2 climate. J. Climate, 13, 13131325, https://doi.org/10.1175/1520-0442(2000)013<1313:LSVFOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., H. Jin, R. Jin, X. Yang, and L. , 2014: Spatiotemporal variations of climate warming in northern northeast China as indicated by freezing and thawing indices. Quat. Int., 349, 187195, https://doi.org/10.1016/j.quaint.2014.06.064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., Q. Wu, H. Jin, S. S. Marchenko, L. , and S. Gao, 2016: Recent changes in the active layer thickness across the Northern Hemisphere. Environ. Earth Sci., 75, 555, https://doi.org/10.1007/s12665-015-5229-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nan, Z., S. Li, G. Chen, and P. Huang, 2012: Surface frost number model and its application to the Tibetan Plateau. J. Glaciol. Geocryol., 34, 8995.

    • Search Google Scholar
    • Export Citation
  • Nelson, F. E., and S. I. Outcalt, 1987: A computational method for prediction and regionalization of permafrost. Arct. Alp. Res., 19, 279288, https://doi.org/10.2307/1551363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, F. E., N. Shiklomanov, G. Mueller, K. Hinkel, D. Walker, and J. Bockheim, 1997: Estimating active-layer thickness over a large region: Kuparuk River basin, Alaska, U.S.A. Arct. Alp. Res., 29, 367378, https://doi.org/10.2307/1551985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H., Y. Kim, and J. S. Kimball, 2016: Widespread permafrost vulnerability and soil active layer increases over the high northern latitudes inferred from satellite remote sensing and process model assessments. Remote Sens. Environ., 175, 349358, https://doi.org/10.1016/j.rse.2015.12.046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, X., T. Zhang, B. Cao, Q. Wang, K. Wang, W. Shao, and H. Guo, 2016: Changes in freezing-thawing index and soil freeze depth over the Heihe River Basin, western China. Arct. Antarct. Alp. Res., 48, 161176, https://doi.org/10.1657/AAAR00C-13-127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepin, N., and Coauthors, 2015: Elevation-dependent warming in mountain regions of the world. Nat. Climate Change, 5, 424430, https://doi.org/10.1038/nclimate2563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piao, S., J. Fang, L. Zhou, Q. Guo, M. Henderson, W. Ji, Y. Li, and S. Tao, 2003: Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. J. Geophys. Res., 108, 4401, https://doi.org/10.1029/2002JD002848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romanovsky, V., and T. Osterkamp, 1995: Interannual variations of the thermal regime of the active layer and near-surface permafrost in northern Alaska. Permafr. Periglac. Process., 6, 313335, https://doi.org/10.1002/ppp.3430060404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romanovsky, V., and Coauthors, 2010: Thermal state of permafrost in Russia. Permafr. Periglac. Process., 21, 136155, https://doi.org/10.1002/ppp.683.

  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596, https://doi.org/10.1016/j.gloplacha.2011.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiklomanov, N., and F. Nelson, 1999: Analytic representation of the active layer thickness field, Kuparuk River Basin, Alaska. Ecol. Modell., 123, 105125, https://doi.org/10.1016/S0304-3800(99)00127-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiklomanov, N., and F. Nelson, 2002: Active-layer mapping at regional scales: A 13-year spatial time series for the Kuparuk region, north-central Alaska. Permafrost Periglacial Processes, 13, 219230, https://doi.org/10.1002/ppp.425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiklomanov, N. I., D. A. Streletskiy, and F. E. Nelson, 2012: Northern Hemisphere component of the global Circumpolar Active Layer Monitoring (CALM) program. Proc. 10th Int. Conf. on Permafrost, Salekhard, Russia, International Permafrost Association, 377–382.

  • Smith, S., V. Romanovsky, A. Lewkowicz, C. Burn, M. Allard, G. Clow, K. Yoshikawa, and J. Throop, 2010: Thermal state of permafrost in North America: A contribution to the International Polar Year. Permafrost Periglacial Processes, 21, 117135, https://doi.org/10.1002/ppp.690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Streletskiy, D. A., A. B. Sherstiukov, O. W. Frauenfeld, and F. E. Nelson, 2015: Changes in the 1963–2013 shallow ground thermal regime in Russian permafrost regions. Environ. Res. Lett., 10, 125005, https://doi.org/10.1088/1748-9326/10/12/125005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Symon, C., L. Arris, and B. Heal, Eds., 2004: Arctic Climate Impact Assessment. Cambridge University Press, 1042 pp.

  • Tape, K., M. Sturm, and C. Racine, 2006: The evidence for shrub expansion in northern Alaska and the pan-Arctic. Global Change Biol., 12, 686702, https://doi.org/10.1111/j.1365-2486.2006.01128.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., S. Sun, and R. Mei, 2011: Vegetation dynamics contributes to the multi-decadal variability of precipitation in the Amazon region. Geophys. Res. Lett., 38, L19703, https://doi.org/10.1029/2011GL049017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2014: A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. Int. J. Climatol., 34, 20592078, https://doi.org/10.1002/joc.3822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., X. Fan, and M. Wang, 2016: Evidence of high-elevation amplification versus Arctic amplification. Sci. Rep., 6, 19219, https://doi.org/10.1038/srep19219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., 1982: Some comments on the evaluation of model performance. Bull. Amer. Meteor. Soc., 63, 13091313, https://doi.org/10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Q., and T. Zhang, 2010: Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. J. Geophys. Res., 115, D09107, https://doi.org/10.1029/2009JD012974.

    • Search Google Scholar
    • Export Citation
  • Wu, Q., Y. Hou, H. Yun, and Y. Liu, 2015: Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai–Xizang (Tibet) Plateau, China. Global Planet. Change, 124, 149155, https://doi.org/10.1016/j.gloplacha.2014.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Q., Z. Zhang, S. Gao, and W. Ma, 2016: Thermal impacts of engineering activities and vegetation layer on permafrost in different alpine ecosystems of the Qinghai–Tibet Plateau, China. Cryosphere, 10, 16951706, https://doi.org/10.5194/tc-10-1695-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, T., Q. Wang, L. Zhao, O. Batkhishig, and M. Watanabe, 2011: Observed trends in surface freezing/thawing index over the period 1987–2005 in Mongolia. Cold Reg. Sci. Technol., 69, 105111, https://doi.org/10.1016/j.coldregions.2011.07.003.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., Y. Zhang, J. Dong, and X. Xiao, 2013: Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl. Acad. Sci. USA, 110, 43094314, https://doi.org/10.1073/pnas.1210423110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, T., R. Barry, K. Knowles, F. Ling, and R. Armstrong, 2003: Distribution of seasonally and perennially frozen ground in the Northern Hemisphere. Proceedings of the 8th International Conference on Permafrost, AA Balkema Publishers, 12891294, https://www.arlis.org/docs/vol1/ICOP/55700698/Pdf/Chapter_226.pdf.

  • Zhang, T., and Coauthors, 2005: Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. J. Geophys. Res., 110, D16101, https://doi.org/10.1029/2004JD005642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, L., Q. Wu, S. Marchenko, and N. Sharkhuu, 2010: Thermal state of permafrost and active layer in central Asia during the International Polar Year. Permafrost Periglacial Processes, 21, 198207, https://doi.org/10.1002/ppp.688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and Coauthors, 2016: Greening of the earth and its drivers. Nat. Climate Change, 6, 791795, https://doi.org/10.1038/nclimate3004.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 540 148 21
PDF Downloads 523 126 16