Observations of Thermally Driven Circulations in the Pyrenees: Comparison of Detection Methods and Impact on Atmospheric Composition Measured at a Mountaintop

M. Hulin Laboratoire d’Aérologie, UPS Université Toulouse 3, CNRS (UMR 5560), Toulouse, France

Search for other papers by M. Hulin in
Current site
Google Scholar
PubMed
Close
,
F. Gheusi Laboratoire d’Aérologie, UPS Université Toulouse 3, CNRS (UMR 5560), Toulouse, France

Search for other papers by F. Gheusi in
Current site
Google Scholar
PubMed
Close
,
M. Lothon Laboratoire d’Aérologie, UPS Université Toulouse 3, CNRS (UMR 5560), Toulouse, France

Search for other papers by M. Lothon in
Current site
Google Scholar
PubMed
Close
,
V. Pont Laboratoire d’Aérologie, UPS Université Toulouse 3, CNRS (UMR 5560), Toulouse, France

Search for other papers by V. Pont in
Current site
Google Scholar
PubMed
Close
,
F. Lohou Laboratoire d’Aérologie, UPS Université Toulouse 3, CNRS (UMR 5560), Toulouse, France

Search for other papers by F. Lohou in
Current site
Google Scholar
PubMed
Close
,
M. Ramonet Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France

Search for other papers by M. Ramonet in
Current site
Google Scholar
PubMed
Close
,
M. Delmotte Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France

Search for other papers by M. Delmotte in
Current site
Google Scholar
PubMed
Close
,
S. Derrien Laboratoire d’Aérologie, UPS Université Toulouse 3, CNRS (UMR 5560), Toulouse, France

Search for other papers by S. Derrien in
Current site
Google Scholar
PubMed
Close
,
G. Athier Laboratoire d’Aérologie, UPS Université Toulouse 3, CNRS (UMR 5560), Toulouse, France

Search for other papers by G. Athier in
Current site
Google Scholar
PubMed
Close
,
Y. Meyerfeld Laboratoire d’Aérologie, UPS Université Toulouse 3, CNRS (UMR 5560), Toulouse, France

Search for other papers by Y. Meyerfeld in
Current site
Google Scholar
PubMed
Close
,
Y. Bezombes Laboratoire d’Aérologie, UPS Université Toulouse 3, CNRS (UMR 5560), Toulouse, France

Search for other papers by Y. Bezombes in
Current site
Google Scholar
PubMed
Close
,
P. Augustin Laboratoire de Physico-Chimie de l’Atmosphère, Université Littoral Côte d’Opale and Université Lille Nord de France, CNRS (UMR 8101), Lille, France

Search for other papers by P. Augustin in
Current site
Google Scholar
PubMed
Close
, and
F. Ravetta UPMC Université Paris 6, CNRS (UMR 8190), LATMOS-IPSL, Paris, France

Search for other papers by F. Ravetta in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The atmospheric composition measured at the Pic du Midi high-altitude observatory (2875 m MSL) in the French Pyrenees is frequently affected by upward transport of boundary layer air during anabatic circulations at different scales. The Pyrenean Platform for Observation of the Atmosphere (P2OA) includes two observatories located 28 km apart: at the Pic du Midi and at a low-altitude site (580 m MSL) located in the plain north of the mountain chain. From a 10-yr-long data series collected at P2OA, three different methods are used to detect thermally induced circulations. The methods are based on observations collected independently at three key locations in the plain–mountain circulation cell: within the altitude return flow above the plain, close to the surface in the plain, and at the mountaintop. The main aims are 1) to present and compare the three detection methods and 2) to evaluate the impact of thermally driven circulations on in situ air composition measurements at the Pic du Midi. The first method uses radar wind measurements at 3000 and 5000 m above the plain to detect the return flow of the plain–mountain circulation. The second, which is based on surface wind data from the plain site, reveals days during which surface thermally induced winds occur locally. The third method, which is based on surface data at the mountaintop, focuses on diurnal moisture cycles to rank days with decreasing anabatic influence. We then compare the three independent detection methods, discuss possible connections among thermal circulations at different scales and locations, and present an evaluation of their impact on in situ atmospheric composition measurements at Pic du Midi.

Current affiliation: Laboratoire d’Aérologie, Université de Toulouse, CNRS, UPS, France.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: François Gheusi, francois.gheusi@aero.obs-mip.fr

Abstract

The atmospheric composition measured at the Pic du Midi high-altitude observatory (2875 m MSL) in the French Pyrenees is frequently affected by upward transport of boundary layer air during anabatic circulations at different scales. The Pyrenean Platform for Observation of the Atmosphere (P2OA) includes two observatories located 28 km apart: at the Pic du Midi and at a low-altitude site (580 m MSL) located in the plain north of the mountain chain. From a 10-yr-long data series collected at P2OA, three different methods are used to detect thermally induced circulations. The methods are based on observations collected independently at three key locations in the plain–mountain circulation cell: within the altitude return flow above the plain, close to the surface in the plain, and at the mountaintop. The main aims are 1) to present and compare the three detection methods and 2) to evaluate the impact of thermally driven circulations on in situ air composition measurements at the Pic du Midi. The first method uses radar wind measurements at 3000 and 5000 m above the plain to detect the return flow of the plain–mountain circulation. The second, which is based on surface wind data from the plain site, reveals days during which surface thermally induced winds occur locally. The third method, which is based on surface data at the mountaintop, focuses on diurnal moisture cycles to rank days with decreasing anabatic influence. We then compare the three independent detection methods, discuss possible connections among thermal circulations at different scales and locations, and present an evaluation of their impact on in situ atmospheric composition measurements at Pic du Midi.

Current affiliation: Laboratoire d’Aérologie, Université de Toulouse, CNRS, UPS, France.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: François Gheusi, francois.gheusi@aero.obs-mip.fr
Save
  • Aneja, V. P., C. S. Claiborn, Z. Li, and A. Murthy, 1994: Trends, seasonal variations, and analysis of high-elevation surface nitric acid, ozone, and hydrogen peroxide. Atmos. Environ., 28, 17811790, https://doi.org/10.1016/1352-2310(94)90140-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnott, W. P., K. Hamasha, H. Moosmuller, P. J. Sheridan, and J. Ogren, 2005: Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Sci. Technol., 39, 1729, https://doi.org/10.1080/027868290901972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, E. L., and B. A. Ridley, 1996: The Mauna Loa observatory photochemistry experiment: Introduction. J. Geophys. Res., 101, 14 53114 541, https://doi.org/10.1029/96JD01203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barneoud, P., S. Beck, P. Lafrique, and B. Lagnoux, 2010: Climatologie sur le site instrumenté du laboratoire d’aérologie (Climatology for the aerology laboratory instrumented site). Université Paul Sabatier Toulouse III Rep., 19 pp., http://p2oa.aero.obs-mip.fr/spip.php?article449&lang=fr.

  • Bianchi, F., and Coauthors, 2016: New particle formation in the free troposphere: A question of chemistry and timing. Science, 352, 11091112, https://doi.org/10.1126/science.aad5456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonasoni, P., A. Stohl, P. Cristofanelli, F. Calzolari, T. Colombo, and F. Evangelisti, 2000: Background ozone variations at Mt. Cimone station. Atmos. Environ., 34, 51835189, https://doi.org/10.1016/S1352-2310(00)00268-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bossert, J. E., and W. R. Cotton, 1994: Regional-scale flows in mountainous terrain. Part I: A numerical and observational comparison. Mon. Wea. Rev., 122, 14491471, https://doi.org/10.1175/1520-0493(1994)122<1449:RSFIMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boulon, J., K. Sellegri, M. Hervo, D. Picard, J.-M. Pichon, P. Fréville, and P. Laj, 2011: Investigation of nucleation events vertical extent: A long term study at two different altitude sites. Atmos. Chem. Phys., 11, 56255639, https://doi.org/10.5194/acp-11-5625-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, B.-G. J., A. R. Desai, B. B. Stephens, D. R. Bowling, S. P. Burns, A. S. Watt, S. L. Heck, and C. Sweeney, 2012: Assessing filtering of mountaintop CO2 mole fractions for application to inverse models of biosphere-atmosphere carbon exchange. Atmos. Chem. Phys., 12, 20992115, https://doi.org/10.5194/acp-12-2099-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukowiecki, N., and Coauthors, 2016: A review of more than 20 years of aerosol observation at the high altitude research station Jungfraujoch, Switzerland (3580 m asl). Aerosol Air Qual. Res., 16, 764788, https://doi.org/10.4209/aaqr.2015.05.0305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvert, J. G., 1990: Glossary of atmospheric chemistry terms (Recommendations 1990). Pure Appl. Geophys., 62, 21672219.

  • Campistron, B., Y. Pointin, F. Lohou, and J.-P. Pagès, 1999: Aspect sensitivity of VHF radar echoes observed in the middle and upper troposphere during the passage of a cut-off low. Radio Sci., 34, 667779, https://doi.org/10.1029/1998RS900032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campistron, B., D. Despaux, M. Lothon, V. Klaus, Y. Pointin, and M. Mauprivez, 2001: A partial 45 MHz sky temperature map obtained from the observations of five ST radars. Ann. Geophys., 19, 863871, https://doi.org/10.5194/angeo-19-863-2001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chambers, S., W. Zahorowski, A. Williams, J. Crawford, and A. Griffiths, 2013: Identifying tropospheric baseline air masses at Mauna Loa Observatory between 2004 and 2010 using Radon-222 and back trajectories. J. Geophys. Res. Atmos., 118, 9921004, https://doi.org/10.1029/2012JD018212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chevalier, A., and Coauthors, 2007: Influence of altitude on ozone levels and variability in the lower troposphere: A ground-based study for western Europe over the period 2001–2004. Atmos. Chem. Phys., 7, 43114326, https://doi.org/10.5194/acp-7-4311-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collaud-Coen, M., E. Weingartner, M. Furger, S. Nyeki, A. S. H. Prévôt, M. Steinbacher, and U. Baltensperger, 2011: Aerosol climatology and planetary boundary influence at the Jungfraujoch analyzed by synoptic weather types. Atmos. Chem. Phys., 11, 59315944, https://doi.org/10.5194/acp-11-5931-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collaud-Coen, M., and Coauthors, 2018: Identification of topographic features influencing aerosol observations at high altitude stations. Atmos. Chem. Phys., 18, 12 28912 313, https://doi.org/10.5194/acp-18-12289-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cristofanelli, P., and Coauthors, 2013: Analysis of summer ozone observations at a high mountain site in central Italy (Campo Imperatore, 2388 m a.s.l.). Pure Appl. Geophys., 170, 19851999, https://doi.org/10.1007/s00024-012-0630-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosson, E. R., 2008: A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor. Appl. Phys., 92B, 403408, https://doi.org/10.1007/s00340-008-3135-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeWekker, S. F., A. Ameen, G. Song, B. B. Stephens, A. G. Hallar, and I. B. McCubbin, 2009: A preliminary investigation of boundary layer effects on daytime Atmospheric CO2 concentrations at a mountaintop location in the Rocky Mountains. Acta Geophys., 57, 904922, https://doi.org/10.2478/s11600-009-0033-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, J., A. Ezcurra, J. Saenz, B. Campistron, G. Ibarra, and F. Saïd, 2010: Atmospheric tides over the Pyrenees: Observational study and numerical simulation. Quart. J. Roy. Meteor. Soc., 136, 12631274, https://doi.org/10.1002/qj.626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dosio, A., S. Galmarini, and G. Graziani, 2002: Simulation of the circulation and related photochemical ozone dispersion in the Po plains (northern Italy): Comparison with the observations of a measuring campaign. J. Geophys. Res., 107, 8189, https://doi.org/10.1029/2000JD000046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ezcurra, A., B. Benech, A. Echelecou, J. M. Santamaría, I. Herrero, and E. Zulueta, 2013: Influence of local air flow regimes on the ozone content of two Pyrenean valleys. Atmos. Environ., 74, 367377, https://doi.org/10.1016/j.atmosenv.2013.03.051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, H., and Coauthors, 1998: Trace gas measurements during the oxidizing capacity of the tropospheric atmosphere campaign 1993 at Izaña. J. Geophys. Res., 103, 13 50513 518, https://doi.org/10.1029/97JD01497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, H., and Coauthors, 2003: Ozone production and trace gas correlations during the June 2000 MINATROC intensive measurement campaign at Mt. Cimone. Atmos. Chem. Phys., 3, 725738, https://doi.org/10.5194/acp-3-725-2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forrer, J., R. Ruttimann, D. Schneiter, A. Fischer, B. Buchmann, and P. Hofer, 2000: Variability of trace gases at the high-Alpine site Jungfraujoch caused by meteorological transport processes. J. Geophys. Res., 105, 12 24112 251, https://doi.org/10.1029/1999JD901178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García, M. I., S. Rodríguez, Y. González, and R. D. García, 2014: Climatology of new particle formation at Izaña mountain GAW Observatory in the subtropical North Atlantic. Atmos. Chem. Phys., 14, 38653881, https://doi.org/10.5194/acp-14-3865-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gheusi, F., and Coauthors, 2006: Ozone et pollution atmosphérique à grande échelle (1): Le réseau de surveillance PAES. Meteorologie, 58, 3035, https://doi.org/10.4267/2042/18206.

    • Search Google Scholar
    • Export Citation
  • Gheusi, F., and Coauthors, 2011: Pic 2005, a field campaign to investigate low-tropospheric ozone variability in the Pyrenees. Atmos. Res., 101, 640665, https://doi.org/10.1016/j.atmosres.2011.04.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gheusi, F., and Coauthors, 2016: La campagne Pic 2010: Observation, modélisation et quantification de la ventilation orographique au-dessus des Pyrénées (The Pic 2010 campaign: Observation, modeling, and quantification of orographic ventilation over the Pyrenees). Presentation, Atmospheric Modeling Workshops (AMA): Observatory Data and Modeling, Météo-France, 55 pp., http://www.meteo.fr/cic/meetings/2016/AMA/presentations/2016/AMA2016_lundi/11-pres_Gheusi_Pic2010_split.pdf.

  • Graf, M., M. Kossmann, K. Trusilova, and G. Mühlbacher, 2016: Identification and climatology of alpine pumping from a regional climate simulation. Front. Earth Sci., 4, 5, https://doi.org/10.3389/feart.2016.00005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Granier, C., G. Pétron, J.-F. Müller, and G. Brasseur, 2000: The impact of natural and anthropogenic hydrocarbons on the tropospheric budget of carbon monoxide. Atmos. Environ., 34, 52555270, https://doi.org/10.1016/S1352-2310(00)00299-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffiths, A. D., F. Conen, E. Weingartner, L. Zimmermann, S. Chambers, A. G. Williams, and M. Steinbacher, 2014: Surface-to-mountaintop transport characterised by radon observations at the Jungfraujoch. Atmos. Chem. Phys., 14, 12 76312 779, https://doi.org/10.5194/acp-14-12763-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haiden, T., 2003: On the pressure field in the slope wind layer. J. Atmos. Sci., 60, 16321635, https://doi.org/10.1175/1520-0469(2003)60<1632:OTPFIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallar, A. G., R. Petersen, I. B. McCubbin, D. Lowenthal, S. Lee, E. Andrews, and F. Yu, 2016: Climatology of new particle formation and corresponding precursors at storm peak laboratory. Aerosol Air Qual. Res., 16, 816826, https://doi.org/10.4209/aaqr.2015.05.0341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henne, S., M. Furger, and A. S. H. Prévôt, 2005: Climatology of mountain venting induced elevated moisture layers in the lee of the Alps. J. Appl. Meteor., 44, 620633, https://doi.org/10.1175/JAM2217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henne, S., J. Klausen, W. Junkermann, J. M. Kariuki, J. O. Aseyo, and B. Buchmann, 2008: Representativeness and climatology of carbon monoxide and ozone at the global GAW station Mt. Kenya in equatorial Africa. Atmos. Chem. Phys., 8, 31193139, https://doi.org/10.5194/acp-8-3119-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henne, S., D. Brunner, D. Folini, S. Solberg, J. Klausen, and B. Buchmann, 2010: Assessment of parameters describing representativeness of air quality in-situ measurement sites. Atmos. Chem. Phys., 10, 35613581, https://doi.org/10.5194/acp-10-3561-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herrmann, E., and Coauthors, 2015: Analysis of long-term aerosol size distribution data from Jungfraujoch with emphasis on free tropospheric conditions, cloud influence, and air mass transport. J. Geophys. Res. Atmos., 120, 94599480, https://doi.org/10.1002/2015JD023660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, M. A., and J. Cuxart, 2014: A study of the nocturnal flows generated in the north side of the Pyrenees. Atmos. Res., 145–146, 244254, https://doi.org/10.1016/j.atmosres.2014.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, M. A., and J. Cuxart, 2016: The influence of the Aure Valley on the BL features observed during BLLAST. BLLAST Workshop, Wageningen, Netherlands, SEDOO, http://bllast.sedoo.fr/workshops/february2016/presentations/MariaAJimenez_mesoscale-circulation.pdf.

  • Keeling, C. D., R. B. Bacastow, A. E. Bainbridge, C. A. Ekdahl, P. R. Guenther, L. S. Waterman, and J. F. S. Chin, 1976: Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus, 28, 538551, https://doi.org/10.1111/j.2153-3490.1976.tb00701.x.

    • Search Google Scholar
    • Export Citation
  • Lin, J. C., D. V. Mallia, D. Wu, and B. B. Stephens, 2017: How can mountaintop CO2 observations be used to constrain regional carbon fluxes? Atmos. Chem. Phys., 17, 55615581, https://doi.org/10.5194/acp-17-5561-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, M., M. Schmidt, M. Ramonet, J.-L. Bonne, A. Colomb, V. Kazan, P. Laj, and J.-M. Pichon, 2015: Three years of semicontinuous greenhouse gas measurements at the Puy de Dôme station (central France). Atmos. Meas. Tech., 8, 39413958, https://doi.org/10.5194/amt-8-3941-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lugauer, M., and P. Winkler, 2005: Thermal circulation in South Bavaria—Climatology and synoptic aspects. Meteor. Z., 14, 1530, https://doi.org/10.1127/0941-2948/2005/0014-0015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macdonald, A. M., K. G. Anlauf, W. R. Leaitch, E. Chan, and D. W. Tarasick, 2011: Interannual variability of ozone and carbon monoxide at the Whistler high elevation site: 2002–2006. Atmos. Chem. Phys., 11, 11 43111 446, https://doi.org/10.5194/acp-11-11431-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marenco, A., 1986: Variations of CO and O3 in the troposphere: Evidence of O3 photochemistry. Atmos. Environ., 20, 911918, https://doi.org/10.1016/0004-6981(86)90275-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mendonca, B. G., 1969: Local wind circulation on the slopes of Mauna Loa. J. Appl. Meteor., 8, 533541, https://doi.org/10.1175/1520-0450(1969)008<0533:LWCOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naja, M., S. Lal, and D. Chand, 2003: Diurnal and seasonal variabilities in surface ozone at a high altitude site Mt Abu (24.6°N, 72.7°E, 1680 m asl) in India. Atmos. Environ., 37, 42054215, https://doi.org/10.1016/S1352-2310(03)00565-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Necki, J., M. Schmidt, K. Rozanski, M. Zimnoch, A. Korus, J. Lasa, R. Graul, and I. Levin, 2003: Six-year record of atmospheric carbon dioxide and methane at a high-altitude mountain site in Poland. Tellus, 55B, 94104, https://doi.org/10.1034/j.1600-0889.2003.01446.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neitola, K., E. Asmi, M. Komppula, A.-P. Hyvärinen, T. Raatikainen, T. S. Panwar, V. P. Sharma, and H. Lihavainen, 2011: New particle formation infrequently observed in Himalayan foothills—Why? Atmos. Chem. Phys., 11, 84478458, https://doi.org/10.5194/acp-11-8447-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Obrist, D., A. Hallar, I. McCubbin, B. Stephens, and T. Rahn, 2008: Atmospheric mercury concentrations at Storm Peak Laboratory in the Rocky Mountains: Evidence for long-range transport from Asia, boundary layer concentrations, and plant mercury uptake. Atmos. Environ., 42, 75797589, https://doi.org/10.1016/j.atmosenv.2008.06.051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oltmans, S. J., and H. Levy II, 1994: Surface ozone measurements from a global network. Atmos. Environ., 28, 924, https://doi.org/10.1016/1352-2310(94)90019-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parrish, D. D., and Coauthors, 2014: Long-term changes in lower tropospheric baseline ozone concentrations: Comparing chemistry-climate models and observations at northern midlatitudes. J. Geophys. Res. Atmos., 119, 57195736, https://doi.org/10.1002/2013JD021435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poltera, Y., G. Martucci, M. Collaud Coen, M. Hervo, L. Emmenegger, S. Henne, D. Brunner, and A. Haefele, 2017: Pathfinderturb: An automatic boundary layer algorithm. development, validation and application to study the impact on in situ measurements at the Jungfraujoch. Atmos. Chem. Phys., 17, 10 05110 070, https://doi.org/10.5194/acp-17-10051-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rampanelli, G., D. Zardi, and R. Rotunno, 2004: Mechanisms of up-valley winds. J. Atmos. Sci., 61, 30973111, https://doi.org/10.1175/JAS-3354.1.

  • Román-Cascón, C., and Coauthors, 2019: Observational characterization of diurnal mountain winds and their impacts on CO2 mixing ratios at three contrasting sites. Atmos. Res., 221, 111126, https://doi.org/10.1016/j.atmosres.2019.01.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, C., and Coauthors, 2015: Frequent nucleation events at the high altitude station of Chacaltaya (5240 m a.s.l.), Bolivia. Atmos. Environ., 102, 1829, https://doi.org/10.1016/j.atmosenv.2014.11.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., A. Gohm, M. N. Lang, D. Leukauf, I. Stiperski, and J. S. Wagner, 2015: On the vertical exchange of heat, mass, and momentum over complex, mountainous terrain. Front. Earth Sci., 3, 114, https://doi.org/10.3389/feart.2015.00076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuepbach, E., T. K. Friedli, P. Zanis, P. S. Monks, and S. A. Penkett, 2001: State space analysis of changing seasonal ozone cycles (1988–1997) at Jungfraujoch (3580 in above sea level) in Switzerland. J. Geophys. Res., 106, 20 41320 427, https://doi.org/10.1029/2000JD900591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumann, U., 1990: Large-eddy simulation of the up-slope boundary layer. Quart. J. Roy. Meteor. Soc., 116, 637670, https://doi.org/10.1002/qj.49711649307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellegri, K., and Coauthors, 2010: Seasonal variations of aerosol size distributions based on long-term measurements at the high altitude Himalayan site of Nepal climate observatory-pyramid (5079 m), Nepal. Atmos. Chem. Phys., 10, 10 67910 690, https://doi.org/10.5194/acp-10-10679-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staufer, J., and Coauthors, 2016: The first 1-year-long estimate of the Paris region fossil fuel CO2 emissions based on atmospheric inversion. Atmos. Chem. Phys., 16, 14 70314 726, https://doi.org/10.5194/acp-16-14703-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steyn, D. G., S. F. J. De Wekker, M. Kossmann, and A. Martilli, 2013: Boundary layers and air quality in mountainous terrain. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges, F. K. Chow, S. F. J. D. Wekker, and B. J. Snyder, Eds., Springer Atmospheric Sciences, 261–289.

    • Crossref
    • Export Citation
  • Tsamalis, C., F. Ravetta, F. Gheusi, H. Delbarre, and P. Augustin, 2014: Mixing of free-tropospheric air with the lowland boundary layer during anabatic transport to a high altitude station. Atmos. Res., 143, 425437, https://doi.org/10.1016/j.atmosres.2014.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venzac, H., and Coauthors, 2008: High frequency new particle formation in the Himalayas. Proc. Natl. Acad. Sci. USA, 105, 15 66615 671, https://doi.org/10.1073/pnas.0801355105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vergeiner, I., and E. Dreiseitl, 1987: Valley winds and slope winds—Observations and elementary thoughts. Meteor. Atmos. Phys., 36, 264286, https://doi.org/10.1007/BF01045154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weingartner, E., H. Saathoff, M. Schnaiter, N. Streit, B. Bitnar, and U. Baltensperger, 2003: Absorption of light by soot particles: Determination of the absorption coefficient by means of aethalometers. J. Aerosol Sci., 34, 14451463, https://doi.org/10.1016/S0021-8502(03)00359-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 1990: Observation of thermally developed wind systems in mountainous terrain. Atmospheric Processes over Complex Terrain, W. Blumen, Ed., Amer. Meteor. Soc., 5–42.

    • Crossref
    • Export Citation
  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

    • Crossref
    • Export Citation
  • Yver Kwok, C., and Coauthors, 2015: Comprehensive laboratory and field testing of cavity ring-down spectroscopy analyzers measuring H2O, CO2, CH4 and CO. Atmos. Meas. Tech., 8, 38673892, https://doi.org/10.5194/amt-8-3867-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zahorowski, W., and Coauthors, 2005: Radon-222 in boundary layer and free tropospheric continental outflow events at three ACE-Asia sites. Tellus, 57, 124140, https://doi.org/10.3402/tellusb.v57i2.16776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zardi, D., and C. D. Whiteman, 2013: Diurnal mountain wind systems. Mountain Weather Research and Forecasting, F. K. Chow, S. F. J. De Wekker, and B. J. Snyder, Eds., Springer Atmospheric Sciences, 35–119.

    • Crossref
    • Export Citation
  • Zaveri, R. A., R. D. Saylor, L. K. Peters, R. McNider, and A. Song, 1995: A model investigation of summertime diurnal ozone behavior in rural mountainous locations. Atmos. Environ., 29, 10431065, https://doi.org/10.1016/1352-2310(94)00319-G.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 435 158 17
PDF Downloads 366 92 3