Simulation of Daily Extreme Precipitation over the United States in the CMIP5 30-Yr Decadal Prediction Experiment

Steve T. Stegall Cooperative Institute for Climate and Satellites, North Carolina State University, and NOAA/National Centers for Environmental Information, Asheville, North Carolina

Search for other papers by Steve T. Stegall in
Current site
Google Scholar
PubMed
Close
and
Kenneth E. Kunkel Cooperative Institute for Climate and Satellites, North Carolina State University, and NOAA/National Centers for Environmental Information, Asheville, North Carolina

Search for other papers by Kenneth E. Kunkel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The CMIP5 decadal hindcast (“Hindcast”) and prediction (“Predict”) experiment simulations from 11 models were analyzed for the United States with respect to two metrics of extreme precipitation: the 10-yr return level of daily precipitation, derived from the annual maximum series of daily precipitation, and the total precipitation exceeding the 99.5th percentile of daily precipitation. Both Hindcast simulations and observations generally show increases for the 1981–2010 historical period. The multimodel-mean Hindcast trends are statistically significant for all regions while the observed trends are statistically significant for the Northeast, Southeast, and Midwest regions. An analysis of CMIP5 simulations driven by historical natural (“HistoricalNat”) forcings shows that the Hindcast trends are generally within the 5th–95th-percentile range of HistoricalNat trends, but those outside that range are heavily skewed toward exceedances of the 95th-percentile threshold. Future projections for 2006–35 indicate increases in all regions with respect to 1981–2010. While there is good qualitative agreement between the observations and Hindcast simulations regarding the direction of recent trends, the multimodel-mean trends are similar for all regions, while there is considerable regional variability in observed trends. Furthermore, the HistoricalNat simulations suggest that observed historical trends are a combination of natural variability and anthropogenic forcing. Thus, the influence of anthropogenic forcing on the magnitude of near-term future changes could be temporarily masked by natural variability. However, continued observed increases in extreme precipitation in the first decade (2006–15) of the “future” period partially confirm the Predict results, suggesting that incorporation of increases in planning would appear prudent.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Steve T. Stegall, sstegall@cicsnc.org

Abstract

The CMIP5 decadal hindcast (“Hindcast”) and prediction (“Predict”) experiment simulations from 11 models were analyzed for the United States with respect to two metrics of extreme precipitation: the 10-yr return level of daily precipitation, derived from the annual maximum series of daily precipitation, and the total precipitation exceeding the 99.5th percentile of daily precipitation. Both Hindcast simulations and observations generally show increases for the 1981–2010 historical period. The multimodel-mean Hindcast trends are statistically significant for all regions while the observed trends are statistically significant for the Northeast, Southeast, and Midwest regions. An analysis of CMIP5 simulations driven by historical natural (“HistoricalNat”) forcings shows that the Hindcast trends are generally within the 5th–95th-percentile range of HistoricalNat trends, but those outside that range are heavily skewed toward exceedances of the 95th-percentile threshold. Future projections for 2006–35 indicate increases in all regions with respect to 1981–2010. While there is good qualitative agreement between the observations and Hindcast simulations regarding the direction of recent trends, the multimodel-mean trends are similar for all regions, while there is considerable regional variability in observed trends. Furthermore, the HistoricalNat simulations suggest that observed historical trends are a combination of natural variability and anthropogenic forcing. Thus, the influence of anthropogenic forcing on the magnitude of near-term future changes could be temporarily masked by natural variability. However, continued observed increases in extreme precipitation in the first decade (2006–15) of the “future” period partially confirm the Predict results, suggesting that incorporation of increases in planning would appear prudent.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Steve T. Stegall, sstegall@cicsnc.org
Save
  • Achtemeier, G. L., 1989: Modification of a successive corrections objective analysis for improved derivative calculations. Mon. Wea. Rev., 117, 7886, https://doi.org/10.1175/1520-0493(1989)117<0078:MOASCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Coles, S. G., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics, Springer, 209 pp.

    • Crossref
    • Export Citation
  • Dettinger, M., 2011: Climate change, atmospheric rivers, and floods in California—A multimodel analysis of storm frequency and magnitude changes. J. Amer. Water Resour. Assoc., 47, 514523, https://doi.org/10.1111/j.1752-1688.2011.00546.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dittus, A. J., D. J. Karoly, S. C. Lewis, and L. V. Alexander, 2015: A multiregion assessment of observed changes in the areal extent of temperature and precipitation extremes. J. Climate, 28, 92069220, https://doi.org/10.1175/JCLI-D-14-00753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dittus, A. J., D. J. Karoly, S. C. Lewis, L. V. Alexander, and M. G. Donat, 2016: A multiregion model evaluation and attribution study of historical changes in the area affected by temperature and precipitation extremes. J. Climate, 29, 82858299, https://doi.org/10.1175/JCLI-D-16-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and Coauthors, 2017: Precipitation change in the United States. Climate Science Special Report: Fourth National Climate Assessment, Volume I, D. J. Wuebbles et al., Eds., U.S. Global Change Research Program, 207–230, https://doi.org/10.7930/J0H993CC.

    • Crossref
    • Export Citation
  • Feng, Z., L. R. Leung, S. Hagos, R. A. Houze, C. D. Burleyson, and K. Balaguru, 2016: More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nat. Commun., 7, 13429, https://doi.org/10.1038/ncomms13429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, L., and Coauthors, 2013: A verification framework for interannual-to-decadal predictions experiments. Climate Dyn., 40, 245272, https://doi.org/10.1007/s00382-012-1481-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Eischeid, J. Perlwitz, X. Quan, K. Wolter, and L. Cheng, 2016: Characterizing recent trends in U.S. heavy precipitation. J. Climate, 29, 23132332, https://doi.org/10.1175/JCLI-D-15-0441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, E., D. J. Wuebbles, K. E. Kunkel, S. C. Olsen, and A. Goodman, 2014: Observational- and model-based trends and projections of extreme precipitation over the contiguous United States. Earth’s Future, 2, 99113, https://doi.org/10.1002/2013EF000185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, E., R. L. Shriver, D. J. Wuebbles, and K. E. Kunkel, 2016: Seasonal and regional variations in extreme precipitation event frequency using CMIP5. Geophys. Res. Lett., 43, 53855393, https://doi.org/10.1002/2016GL069151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., S. A. Changnon, C. G. Lonnquist, and J. R. Angel, 1990: A real-time climate information system for the midwestern United States. Bull. Amer. Meteor. Soc., 71, 16011609, https://doi.org/10.1175/1520-0477(1990)071<1601:ARTCIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, K. Hubbard, K. Redmond, K. Andsager, M. Kruk, and M. Spinar, 2005: Quality control of pre-1948 cooperative observer network data. J. Atmos. Oceanic Technol., 22, 16911705, https://doi.org/10.1175/JTECH1816.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., T. R. Karl, and D. R. Easterling, 2007: A Monte Carlo assessment of uncertainties in heavy precipitation frequency variations. J. Hydrometeor., 8, 11521160, https://doi.org/10.1175/JHM632.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, D. A. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2012: Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. J. Hydrometeor., 13, 11311141, https://doi.org/10.1175/JHM-D-11-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., and Coauthors, 2013a: Monitoring and understanding changes in extreme storms: State of knowledge. Bull. Amer. Meteor. Soc., 94, 499514, https://doi.org/10.1175/BAMS-D-11-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., T. R. Karl, D. R. Easterling, K. Redmond, J. Young, X. Yin, and P. Hennon, 2013b: Probable maximum precipitation (PMP) and climate change. Geophys. Res. Lett., 40, 14021408, https://doi.org/10.1002/grl.50334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Climatic Change, 109, 213241, https://doi.org/10.1007/s10584-011-0156-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melillo, J. M., T. C. Richmond, and G. W. Yohe, Eds., 2014: Climate change impacts in the United States: The Third National Climate Assessment. U.S. Global Change Research Program Rep., 841 pp., https://doi.org/10.7930/J0Z31WJ2.

    • Crossref
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF Ensemble Prediction System: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73119, https://doi.org/10.1002/qj.49712252905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mondal, A., S. Kundu, and A. Mukhopadhyay, 2012: Rainfall trend analysis by Mann-Kendall test: A case study of north-eastern part of Cuttack district, Orissa. Int. J. Geol. Earth Environ. Sci., 2, 7078.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, https://doi.org/10.1038/nature08823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2015: Precipitation extremes under climate change. Curr. Climate Change Rep., 1, 4959, https://doi.org/10.1007/s40641-015-0009-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paciorek, C. J., 2018: climextRemes: Tools for analyzing climate extremes., version 0.2.0. R package, https://cran.r-project.org/package=climextRemes.

  • Paciorek, C. J., D. A. Stone, and M. F. Wehner, 2018: Quantifying statistical uncertainty in the attribution of human influence on severe weather. Wea. Climate Extremes, 20, 6980, https://doi.org/10.1016/j.wace.2018.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perica, S., and Coauthors, 2013: Precipitation-Frequency Atlas of the United States. NOAA Atlas 14, Vol 8, 289 pp., https://www.nws.noaa.gov/oh/hdsc/PF_documents/Atlas14_Volume8.pdf.

  • Prein, A. F., R. M. Rasmussen, K. Ikeda, C. Liu, M. P. Clark, and G. J. Holland, 2017: The future intensification of hourly precipitation extremes. Nat. Climate Change, 7, 4852, https://doi.org/10.1038/nclimate3168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2012: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field et al., Eds., Cambridge University Press, 109–230.

  • Shields, C. A., and J. T. Kiehl, 2016: Atmospheric river landfall-latitude changes in future climate simulations. Geophys. Res. Lett., 43, 87758782, https://doi.org/10.1002/2016GL070470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2009: A summary of the CMIP5 experiment design. PCDMI Rep., 33 pp., https://cmip.llnl.gov/cmip5/docs/Taylor_CMIP5_design.pdf.

  • Taylor, K. E., R. J. Stoufer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 32973319, https://doi.org/10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J., and Coauthors, 2014: Our changing climate. Climate change impacts in the United States: The Third National Climate Assessment. U.S. Global Change Research Program Rep., 19–67, https://doi.org/10.7930/J0KW5CXT.

    • Crossref
    • Export Citation
  • Wuebbles, D. J., and Coauthors, 2017: Our globally changing climate. Climate Science Special Report: Fourth National Climate Assessment, Volume I, D. J. Wuebbles et al., Eds., U.S. Global Change Research Program, 40–96, https://science2017.globalchange.gov/chapter/2/.

    • Crossref
    • Export Citation
  • Zhang, X., F. W. Zwiers, and G. Li, 2004: Monte Carlo experiments on the detection of trends in extreme values. J. Climate, 17, 19451952, https://doi.org/10.1175/1520-0442(2004)017<1945:MCEOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1084 262 11
PDF Downloads 435 99 7