On Use of the Standard Deviation of the Mass Distribution as a Parameter in Raindrop Size Distribution Functions

Paul L. Smith Atmospheric and Environmental Sciences Program, South Dakota School of Mines and Technology, Rapid City, South Dakota

Search for other papers by Paul L. Smith in
Current site
Google Scholar
PubMed
Close
,
Roger W. Johnson Department of Mathematics and Computer Science, South Dakota School of Mines and Technology, Rapid City, South Dakota

Search for other papers by Roger W. Johnson in
Current site
Google Scholar
PubMed
Close
, and
Donna V. Kliche Department of Mathematics and Computer Science, South Dakota School of Mines and Technology, Rapid City, South Dakota

Search for other papers by Donna V. Kliche in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Use of the standard deviation σm of the drop mass distribution as one of the three parameters of raindrop size distribution (DSD) functions was introduced for application to disdrometer data supporting the Global Precipitation Measurement dual-frequency radar system. The other two parameters are a normalized drop number concentration Nw and the mass-weighted mean diameter Dm. This paper presents an evaluation of that formulation of the DSD functions, in two parts. First is a mathematical analysis showing that the procedure for estimating σm, along with the other DSD parameters, from disdrometer data is in essence another moment method. As such, it is subject to the biases and errors inherent in all moment methods. When the form of the DSD function is specified, it is inferior (like all moment methods) to the maximum likelihood technique for fitting parameters to sampled data. The second part is a series of sampling simulations illustrating the biases and errors involved in applying the formulation to the specific case of gamma DSDs. It leads to underestimates of σm and consequently to overestimates of the gamma shape parameter—with large root-mean-square errors. Comparison with maximum likelihood estimates shows the degree of improvement that could be obtained in the estimates of the shape parameter. The propensity to underestimate σm will be pervasive, and users of this DSD formulation should be cognizant of the biases and errors that can occur.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paul L. Smith, paul.smith@sdsmt.edu

Abstract

Use of the standard deviation σm of the drop mass distribution as one of the three parameters of raindrop size distribution (DSD) functions was introduced for application to disdrometer data supporting the Global Precipitation Measurement dual-frequency radar system. The other two parameters are a normalized drop number concentration Nw and the mass-weighted mean diameter Dm. This paper presents an evaluation of that formulation of the DSD functions, in two parts. First is a mathematical analysis showing that the procedure for estimating σm, along with the other DSD parameters, from disdrometer data is in essence another moment method. As such, it is subject to the biases and errors inherent in all moment methods. When the form of the DSD function is specified, it is inferior (like all moment methods) to the maximum likelihood technique for fitting parameters to sampled data. The second part is a series of sampling simulations illustrating the biases and errors involved in applying the formulation to the specific case of gamma DSDs. It leads to underestimates of σm and consequently to overestimates of the gamma shape parameter—with large root-mean-square errors. Comparison with maximum likelihood estimates shows the degree of improvement that could be obtained in the estimates of the shape parameter. The propensity to underestimate σm will be pervasive, and users of this DSD formulation should be cognizant of the biases and errors that can occur.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paul L. Smith, paul.smith@sdsmt.edu
Save
  • Alonge, A., and T. Afullo, 2012: Seasonal analysis and prediction of rainfall effects in eastern South Africa at microwave frequencies. Prog. Electromagn. Res., 40, 279303, https://doi.org/10.2528/PIERB12020305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, A. C., 1950: The size distribution of raindrops. Quart. J. Roy. Meteor. Soc., 76, 1636, https://doi.org/10.1002/qj.49707632704.

  • Bradley, S. G., and C. D. Stow, 1974: The measurement of charge and size of raindrops. Part II: Results and analysis at ground level. J. Appl. Meteor., 13, 131147, https://doi.org/10.1175/1520-0450(1974)013<0131:TMOCAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Caracciolo, C., F. Prodi, A. Battaglia, and F. Porcu, 2006: Analysis of the moments and parameters of a gamma DSD to infer precipitation properties. Atmos. Res., 80, 165186, https://doi.org/10.1016/j.atmosres.2005.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., and Z. Levin, 1986: The lognormal fit to raindrop spectra from frontal convective clouds in Israel. J. Climate Appl. Meteor., 25, 13461363, https://doi.org/10.1175/1520-0450(1986)025<1346:TLFTRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. W., D. V. Kliche, and P. L. Smith, 2011: Comparison of estimators for parameters of gamma distributions with left-truncated samples. J. Appl. Meteor. Climatol., 50, 296310, https://doi.org/10.1175/2010JAMC2478.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. W., D. V. Kliche, and P. L. Smith, 2014: Maximum likelihood estimation of gamma parameters for coarsely-binned and truncated raindrop size data. Quart. J. Roy. Meteor. Soc., 140, 12451256, https://doi.org/10.1002/qj.2209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kliche, D. V., 2007: Raindrop size distribution functions: An empirical approach. Ph.D. dissertation, South Dakota School of Mines and Technology, 211 pp.

  • Kozu, T., and K. Nakamura, 1991: Rainfall parameter estimation from dual-radar measurements combining reflectivity profile and path-integrated attenuation. J. Atmos. Oceanic Technol., 8, 259270, https://doi.org/10.1175/1520-0426(1991)008<0259:RPEFDR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallet, C., and L. Barthes, 2009: Estimation of gamma raindrop size distribution parameters: Statistical fluctuations and estimation errors. J. Atmos. Oceanic Technol., 26, 15721584, https://doi.org/10.1175/2009JTECHA1199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowitz, A. H., 1976: Raindrop size distribution expressions. J. Appl. Meteor., 15, 10291031, https://doi.org/10.1175/1520-0450(1976)015<1029:RSDE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rice, J., 1995: Mathematical Statistics and Data Analysis, 2nd ed. Wadsworth, 602 pp.

  • Robertson, C. A., and J. G. Fryer, 1970: The bias and accuracy of moment estimators. Biometrika, 57, 5765, https://doi.org/10.1093/biomet/57.1.57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sekhon, R. S., and R. C. Srivastava, 1970: Snow size spectra and radar reflectivity. J. Atmos. Sci., 27, 299307, https://doi.org/10.1175/1520-0469(1970)027<0299:SSSARR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. L., 2016: Sampling issues in estimating radar variables from disdrometer data. J. Atmos. Oceanic Technol., 33, 23052313, https://doi.org/10.1175/JTECH-D-16-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. L., D. V. Kliche, and R. W. Johnson, 2009: The bias and error in moment estimators for parameters of drop size distribution functions: Sampling from gamma distributions. J. Appl. Meteor. Climatol., 48, 21182126, https://doi.org/10.1175/2009JAMC2114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., P. Gatlin, V. N. Bringi, W. Petersen, P. Kennedy, B. Notaros, and L. Carey, 2017: Toward completing the raindrop size spectrum: Case studies involving 2D-video disdrometer, droplet spectrometer, and polarimetric radar measurements. J. Appl. Meteor. Climatol., 56, 877896, https://doi.org/10.1175/JAMC-D-16-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355371, https://doi.org/10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variation in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775, https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 1998: Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor., 37, 912923, https://doi.org/10.1175/1520-0450(1998)037<0912:RMARPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos. Sci., 31, 10671078, https://doi.org/10.1175/1520-0469(1974)031<1067:TJORS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallis, J. R., N. C. Matalas, and J. R. Slack, 1974: Just a moment! Water Resour. Res., 10, 211219, https://doi.org/10.1029/WR010i002p00211.

  • Weber, S., 1976: The Dm analysis of precipitation particle size distributions. M.S. thesis, Dept. of Atmospheric Sciences, South Dakota School of Mines and Technology, 80 pp.

  • Wilks, D. S., 1989: Rainfall intensity, the Weibull distribution, and estimation of daily surface runoff. J. Appl. Meteor., 28, 5258, https://doi.org/10.1175/1520-0450(1989)028<0052:RITWDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C. R., and Coauthors, 2014: Describing the shape of raindrop size distributions using uncorrelated raindrop mass spectrum parameters. J. Appl. Meteor. Climatol., 53, 12821296, https://doi.org/10.1175/JAMC-D-13-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C. R., and Coauthors, 2015: Reply to “Comments on ‘Describing the shape of raindrop size distributions using uncorrelated raindrop mass spectrum parameters.’” J. Appl. Meteor. Climatol., 54, 19771982, https://doi.org/10.1175/JAMC-D-15-0058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, Z.-S., and N. Chen, 2017: Closed-form estimators for the gamma distribution derived from likelihood equations. Amer. Stat., 71, 177181, https://doi.org/10.1080/00031305.2016.1209129.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 257 74 11
PDF Downloads 227 52 9