Characterization of Bacterial Communities in Bioaerosols over Northern Chinese Marginal Seas and the Northwestern Pacific Ocean in Spring

Manman Ma Key Laboratory of Marine Environment and Ecology, Ministry of Education, and Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, and College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong, China

Search for other papers by Manman Ma in
Current site
Google Scholar
PubMed
Close
,
Yu Zhen Key Laboratory of Marine Environment and Ecology, Ministry of Education, and Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, and College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong, China

Search for other papers by Yu Zhen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1097-8179
, and
Tiezhu Mi Key Laboratory of Marine Environment and Ecology, Ministry of Education, and Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, and College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong, China

Search for other papers by Tiezhu Mi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Studies of the community structures of bacteria in marine aerosols of different particle sizes have not been reported. Aerosol samples were collected using a six-stage bioaerosol sampler over the Bohai Sea, the Yellow Sea, and northwestern Pacific Ocean in the spring of 2014. The diversity and composition of these samples were investigated by Illumina high-throughput sequencing, and 130 genera were detected in all of the samples; the most abundant bacterial genus was Bacteroides, followed by Prevotella and Megamonas. The Chao1 and Shannon diversity indices ranged from 193 to 1044 and from 5.44 to 8.33, respectively. The bacterial community structure in coarse particles (diameter larger than 2.1 μm) was more complex and diverse than that in fine particles (diameter less than 2.1 μm) in marine bioaerosols from over the Yellow Sea and northwestern Pacific Ocean, while the opposite trend was observed for samples collected over the Bohai Sea. Although we were sampling over marine regions, the sources of the bioaerosols were mostly continental. Temperature and wind speed significantly influenced the bacterial communities in marine aerosols of different particle sizes. There may be a bacterial background in the atmosphere in the form of several dominant taxa, and the bacterial communities are likely mixed constantly during transmission.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yu Zhen, zhenyu@ouc.edu.cn

Abstract

Studies of the community structures of bacteria in marine aerosols of different particle sizes have not been reported. Aerosol samples were collected using a six-stage bioaerosol sampler over the Bohai Sea, the Yellow Sea, and northwestern Pacific Ocean in the spring of 2014. The diversity and composition of these samples were investigated by Illumina high-throughput sequencing, and 130 genera were detected in all of the samples; the most abundant bacterial genus was Bacteroides, followed by Prevotella and Megamonas. The Chao1 and Shannon diversity indices ranged from 193 to 1044 and from 5.44 to 8.33, respectively. The bacterial community structure in coarse particles (diameter larger than 2.1 μm) was more complex and diverse than that in fine particles (diameter less than 2.1 μm) in marine bioaerosols from over the Yellow Sea and northwestern Pacific Ocean, while the opposite trend was observed for samples collected over the Bohai Sea. Although we were sampling over marine regions, the sources of the bioaerosols were mostly continental. Temperature and wind speed significantly influenced the bacterial communities in marine aerosols of different particle sizes. There may be a bacterial background in the atmosphere in the form of several dominant taxa, and the bacterial communities are likely mixed constantly during transmission.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yu Zhen, zhenyu@ouc.edu.cn
Save
  • Ahern, H. E., K. A. Walsh, T. C. J. Hill, and B. F. Moffett, 2007: Fluorescent pseudomonads isolated from Hebridean cloud and rain water produce biosurfactants but do not cause ice nucleation. Biogeosciences, 4, 115124, https://doi.org/10.5194/bg-4-115-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aller, J. Y., M. R. Kuznetsova, C. J. Jahns, and P. F. Kemp, 2005: The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. J. Aerosol Sci., 36, 801812, https://doi.org/10.1016/j.jaerosci.2004.10.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ariya, P. A., and M. Amyot, 2004: New directions: The role of bioaerosols in atmospheric chemistry and physics. Atmos. Environ., 38, 12311232, https://doi.org/10.1016/j.atmosenv.2003.12.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, H., H. Giebl, R. Hitzenberger, A. Kasper-Giebl, G. Reischl, F. Zibuschka, and H. Puxbaum, 2003: Airborne bacteria as cloud condensation nuclei. J. Geophys. Res., 108, 4658, https://doi.org/10.1029/2003JD003545.

    • Search Google Scholar
    • Export Citation
  • Bowers, R. M., N. Clements, J. B. Emerson, C. Wiedinmyer, M. P. Hannigan, and N. Fierer, 2013: Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environ. Sci. Technol., 47, 12 09712 106, https://doi.org/10.1021/es402970s.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrows, S. M., W. Elbert, M. G. Lawrence, and U. Poschl, 2009a: Bacteria in the global atmosphere—Part 1: Review and synthesis of literature data for different ecosystems. Atmos. Chem. Phys., 9, 92639280, https://doi.org/10.5194/acp-9-9263-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrows, S. M., T. Butler, P. Jöckel, H. Tost, A. Kerkweg, U. Pöschl, and M. G. Lawrence, 2009b: Bacteria in the global atmosphere—Part 2: Modeling of emissions and transport between different ecosystems. Atmos. Chem. Phys., 9, 92819297, https://doi.org/10.5194/acp-9-9281-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caporaso, J. G., and Coauthors, 2010: QIIME allows analysis of high-throughput community sequencing data. Nat. Methods, 7, 335336, https://doi.org/10.1038/nmeth.f.303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, B. C., and C. Y. Hwang, 2011: Prokaryotic abundance and 16S rRNA gene sequences detected in marine aerosols on the East Sea (Korea). FEMS Microbiol. Ecol., 76, 327341, https://doi.org/10.1111/j.1574-6941.2011.01053.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christner, B. C., 2010: Bioprospecting for microbial products that affect ice crystal formation and growth. Appl. Microbiol. Biotechnol., 85, 481489, https://doi.org/10.1007/s00253-009-2291-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, J. R., and J. M. Tiedje, 2014: History and impact of RDP: A legacy from Carl Woese to microbiology. RNA Biol., 11, 239243, https://doi.org/10.4161/rna.28306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delang, C. O., and W. M. Li, 2013: Species richness and diversity. Ecological Succession on Fallowed Shifting Cultivation Fields, Springer, 39–66.

    • Crossref
    • Export Citation
  • Deleon-Rodriguez, N., and Coauthors, 2013: Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications. Proc. Natl. Acad. Sci. USA, 110, 25752580, https://doi.org/10.1073/pnas.1212089110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diehl, K., C. Quick, S. Matthias-Maser, S. K. Mitra, and R. Jaenicke, 2001: The ice nucleating ability of pollen: Part I: Laboratory studies in deposition and condensation freezing modes. Atmos. Res., 58, 7587, https://doi.org/10.1016/S0169-8095(01)00091-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., and Coauthors, 2016: Concentration and size distribution of total airborne microbes in hazy and foggy weather. Sci. Total Environ., 541, 10111018, https://doi.org/10.1016/j.scitotenv.2015.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draxler, R., and G. Rolph, 2013: HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory). NOAA Air Resources Laboratory, https://ready.arl.noaa.gov/HYSPLIT.php.

  • Dueker, M. E., K. C. Weathers, G. D. O ’Mullan, A. R. Juhl, and M. Uriarte, 2011: Environmental controls on coastal coarse aerosols: Implications for microbial content and deposition in the near-shore environment. Environ. Sci. Technol., 45, 33863392, https://doi.org/10.1021/es1035128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dusek, U., and Coauthors, 2006: Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science, 312, 13751378, https://doi.org/10.1126/science.1125261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edgar, R. C., 2013: UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods, 10, 996998, https://doi.org/10.1038/nmeth.2604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elmir, S. M., and Coauthors, 2009: Quantitative evaluation of enterococci and Bacteroidales released by adults and toddlers in marine water. Water Res., 43, 46104616, https://doi.org/10.1016/j.watres.2009.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fahlgren, C., Å. Hagström, D. Nilsson, and U. L. Zweifel, 2010: Annual variations in the diversity, viability, and origin of airborne bacteria. Appl. Environ. Microbiol., 76, 30153025, https://doi.org/10.1128/AEM.02092-09.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franc, G. D., and P. J. Demott, 1998: Cloud activation characteristics of airborne Erwinia carotovora cells. J. Appl. Meteor., 37, 12931300, https://doi.org/10.1175/1520-0450(1998)037<1293:CACOAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzetti, A., I. Gandolfi, E. Gaspari, R. Ambrosini, and G. Bestetti, 2011: Seasonal variability of bacteria in fine and coarse urban air particulate matter. Appl. Microbiol. Biotechnol., 90, 745753, https://doi.org/10.1007/s00253-010-3048-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fröhlich-Nowoisky, J., and Coauthors, 2016: Bioaerosols in the earth system: Climate, health, and ecosystem interactions. Atmos. Res., 182, 346376, https://doi.org/10.1016/j.atmosres.2016.07.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, H., M. Zheng, C. Yan, X. Li, H. Gao, X. Yao, Z. Guo, and Y. Zhang, 2015: Sources and characteristics of fine particles over the Yellow Sea and Bohai Sea using online single particle aerosol mass spectrometer. J. Environ. Sci., 29, 6270, https://doi.org/10.1016/j.jes.2014.09.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gandolfi, I., V. Bertolini, R. Ambrosini, G. Bestetti, and A. Franzetti, 2013: Unravelling the bacterial diversity in the atmosphere. Appl. Microbiol. Biotechnol., 97, 47274736, https://doi.org/10.1007/s00253-013-4901-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, E., T. C. J. Hill, A. J. Prenni, P. J. Demott, G. D. Franc, and S. M. Kreidenweis, 2012: Biogenic ice nuclei in boundary layer air over two U.S. High Plains agricultural regions. J. Geophys. Res., 117, D18209, https://doi.org/10.1029/2012JD018343.

    • Search Google Scholar
    • Export Citation
  • Green, H. C., O. C. Shanks, M. Sivaganesan, R. A. Haugland, and K. G. Field, 2011: Differential decay of human faecal Bacteroides in marine and freshwater. Environ. Microbiol., 13, 32353249, https://doi.org/10.1111/j.1462-2920.2011.02549.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grinshpun, S. A., and J. M. Clark, 2005: Measurement and characterization of bioaerosols. J. Aerosol Sci., 36, 553555, https://doi.org/10.1016/j.jaerosci.2005.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, R. M., and Coauthors, 2005: Climate factors influencing bacterial count in background air samples. Int. J. Biometeorol., 49, 167178, https://doi.org/10.1007/s00484-004-0225-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirano, S. S., and C. D. Upper, 2000: Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—A pathogen, ice nucleus, and epiphyte. Microbiol. Mol. Biol. Rev., 64, 624653, https://doi.org/10.1128/MMBR.64.3.624-653.2000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, J., and S. Duncan, 2005: Estimating aerosol hazards from an anthrax letter. J. Aerosol Sci., 36, 701719, https://doi.org/10.1016/j.jaerosci.2004.11.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, W., K. Murata, S. Fukuyama, Y. Kawai, E. Oka, M. Uematsu, and D. Zhang, 2017: Concentration and viability of airborne bacteria over the Kuroshio Extension region in the northwestern Pacific Ocean: Data from three cruises. J. Geophys. Res. Atmos., 122, 12 89212 905, https://doi.org/10.1002/2017JD027287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalogerakis, N., D. Paschali, V. Lekaditis, A. Pantidou, K. Eleftheriadis, and M. Lazaridis, 2005: Indoor air quality—Bioaerosol measurements in domestic and office premises. J. Aerosol Sci., 36, 751761, https://doi.org/10.1016/j.jaerosci.2005.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, K., S. Dong, Y. Wu, and M. Yao, 2010: Comparison of the biological content of air samples collected at ground level and at higher elevation. Aerobiologia, 26, 233244, https://doi.org/10.1007/s10453-010-9159-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., J. Qi, H. Zhang, S. Huang, L. Li, and D. Gao, 2011: Concentration and size distribution of bioaerosols in an outdoor environment in the Qingdao coastal region. Sci. Total Environ., 409, 38123819, https://doi.org/10.1016/j.scitotenv.2011.06.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J., 2009: Relationship between meteorological conditions and particle size distribution of atmospheric aerosols (in Chinese). J. Meteor. Environ., 25, 15.

    • Search Google Scholar
    • Export Citation
  • Ma, M., Y. Zhen, M. I. Tie-Zhu, Q. I. Jian-Hua, C. C. Shao, and W. R. Feng, 2017: Bacterial community characteristics in different particle sizes of bioaerosols in winter haze days in Qingdao (in Chinese). Zhongguo Huanjing Kexue, 37, 28552865.

    • Search Google Scholar
    • Export Citation
  • Maki, L. R., E. L. Galyan, M. M. Changchien, and D. R. Caldwell, 1974: Ice nucleation induced by Pseudomonas syringae. Appl. Microbiol., 28, 456459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maki, T., Y. Kurosaki, K. Onishi, K. C. Lee, S. B. Pointing, D. Jugder, N. Yamanaka, H. Hasegawa, and M. Shinoda, 2017: Variations in the structure of airborne bacterial communities in Tsogt-Ovoo of Gobi desert area during dust events. Air Qual. Atmos. Health, 10, 249260, https://doi.org/10.1007/s11869-016-0430-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masella, A. P., A. K. Bartram, J. M. Truszkowski, D. G. Brown, and J. D. Neufeld, 2012: PANDAseq: Paired-end assembler for illumina sequences. BMC Bioinf., 13, 3137, https://doi.org/10.1186/1471-2105-13-31.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, C. E., D. G. Georgakopoulos, and D. C. Sands, 2004: Ice nucleation active bacteria and their potential role in precipitation. J. Phys. IV, 121, 87103, https://doi.org/10.1051/jp4:2004121004.

    • Search Google Scholar
    • Export Citation
  • Polymenakou, P. N., M. Mandalakis, E. G. Stephanou, and A. Tselepides, 2008: Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the eastern Mediterranean. Environ. Health Perspect., 116, 292296, https://doi.org/10.1289/ehp.10684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qi, J. H., Q. Shao, W. Xu, D. Gao, and C. Jin, 2014: Seasonal distribution of bioaerosols in the coastal region of Qingdao. J. Ocean Univ. China, 13, 5765, https://doi.org/10.1007/s11802-014-1951-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qi, J. H., X. Zhong, Q. Shao, D. Gao, L. Wu, L. Huang, and Y. Ye, 2015: Microbial activity levels in atmospheric bioaerosols in Qingdao. Aerobiologia, 31, 353365, https://doi.org/10.1007/s10453-015-9369-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roggenbuck, M., and Coauthors, 2014: The microbiome of New World vultures. Nat. Commun., 5, 54985504, https://doi.org/10.1038/ncomms6498.

  • Sanjit, L., and D. Bhatt, 2005: How relevant are the concepts of species diversity and species richness? J. Biosci., 30, 557560, https://doi.org/10.1007/BF02703552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Šantl-Temkiv, T., K. Finster, B. M. Hansen, N. W. Nielsen, and U. G. Karlson, 2012: The microbial diversity of a storm cloud as assessed by hailstones. FEMS Microbiol. Ecol., 81, 684695, https://doi.org/10.1111/j.1574-6941.2012.01402.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Šantl-Temkiv, T., K. Finster, T. Dittmar, B. M. Hansen, R. Thyrhaug, N. W. Nielsen, and U. G. Karlson, 2013: Hailstones: A window into the microbial and chemical inventory of a storm cloud. PLoS One, 8, e53550, https://doi.org/10.1371/journal.pone.0053550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Šantl-Temkiv, T., and Coauthors, 2015: Characterization of airborne ice-nucleation-active bacteria and bacterial fragments. Atmos. Environ., 109, 105117, https://doi.org/10.1016/j.atmosenv.2015.02.060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sattar, A. A., 2014: Lipopolysaccharide in marine bathing water; a potential real-time biomarker of bacterial contamination and relevance to human health. Thesis, School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, 246 pp., https://pearl.plymouth.ac.uk/bitstream/handle/10026.1/3185/2014%20Sattar%2010250431%20PhD.pdf;sequence=1.

  • Seifried, J. S., A. Wichels, and G. Gerdts, 2015: Spatial distribution of marine airborne bacterial communities. MicrobiologyOpen, 4, 475490, https://doi.org/10.1002/mbo3.253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, H. B., and Coauthors, 2001: Global distribution and sources of volatile and nonvolatile aerosol in the remote troposphere. J. Geophys. Res., 107, 4121, https://doi.org/10.1029/2001JD000486.

    • Search Google Scholar
    • Export Citation
  • Vali, G., P. J. DeMott, O. Möhler, and T. F. Whale, 2015: A proposal for ice nucleation terminology. Atmos. Chem. Phys., 15, 10 26310 270, https://doi.org/10.5194/acp-15-10263-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Donkelaar, A., R. V. Martin, M. Brauer, R. Kahn, R. Levy, C. Verduzco, and P. J. Villeneuve, 2010: Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environ. Health Perspect., 118, 847855, https://doi.org/10.1289/ehp.0901623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Leuken, J. P. G., A. N. Swart, P. Droogers, A. V. Pul, D. Heederik, and A. H. Havelaar, 2016: Climate change effects on airborne pathogenic bioaerosol concentrations: a scenario analysis. Aerobiologia, 32, 607617, https://doi.org/10.1007/s10453-016-9435-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veron, F., 2015: Ocean spray. Annu. Rev. Fluid Mech., 47, 507538, https://doi.org/10.1146/annurev-fluid-010814-014651.

  • Wu, J., 1992: Bubble flux and marine aerosol spectra under various wind velocities. J. Geophys. Res. Oceans, 97, 23272333, https://doi.org/10.1029/91JC02568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., 2014: Microbial community diversity of bioaerosols in Qingdao and the Yellow Sea (in Chinese). Thesis, Department of Environmental Science, Ocean University of China, 71 pp.

  • Xia, X., J. Wang, J. Ji, J. Zhang, L. Chen, and R. Zhang, 2015: Bacterial communities in marine aerosols revealed by 454 pyrosequencing of the 16S rRNA gene. J. Atmos. Sci., 72, 29973008, https://doi.org/10.1175/JAS-D-15-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, C., and Coauthors, 2017: Bacterial characterization in ambient submicron particles during severe haze episodes at Ji’nan, China. Sci. Total Environ., 580, 188196, https://doi.org/10.1016/j.scitotenv.2016.11.145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, Y., Q. Chen, L. Jin, B. Chen, S. Zhu, and X. Zhang, 2012: The effects of deep convection on the concentration and size distribution of aerosol particles within the upper troposphere: A case study. J. Geophys. Res., 117, D22202, https://doi.org/10.1029/2012JD017827.

    • Search Google Scholar
    • Export Citation
  • Zhen, Q., Y. Deng, Y. Wang, X. Wang, H. Zhang, X. Sun, and Z. Ouyang, 2017: Meteorological factors had more impact on airborne bacterial communities than air pollutants. Sci. Total Environ., 601–602, 703712, https://doi.org/10.1016/j.scitotenv.2017.05.049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, X., J. Qi, H. Li, L. Dong, and D. Gao, 2016: Seasonal distribution of microbial activity in bioaerosols in the outdoor environment of the Qingdao coastal region. Atmos. Environ., 140, 506513, https://doi.org/10.1016/j.atmosenv.2016.06.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, C., K. Kawamura, and B. Kunwar, 2015: Organic tracers of primary biological aerosol particles at subtropical Okinawa Island in the western North Pacific Rim. J. Geophys. Res. Atmos., 120, 55045523, https://doi.org/10.1002/2015JD023611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zweifel, U. L., Å. Hagström, K. Holmfeldt, R. Thyrhaug, C. Geels, L. M. Frohn, C. A. Skjøth, and U. G. Karlson, 2012: High bacterial 16S rRNA gene diversity above the atmospheric boundary layer. Aerobiologia, 28, 481498, https://doi.org/10.1007/s10453-012-9250-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 795 226 13
PDF Downloads 732 162 21