Automated Mapping of Convective Clouds (AMCC) Thermodynamical, Microphysical, and CCN Properties from SNPP/VIIRS Satellite Data

Zhiguo Yue Meteorological Institute of Shaanxi Province, Xi’an, China
Office of Weather Modification of Shaanxi Province, Xi’an, China

Search for other papers by Zhiguo Yue in
Current site
Google Scholar
PubMed
Close
,
Daniel Rosenfeld Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by Daniel Rosenfeld in
Current site
Google Scholar
PubMed
Close
,
Guihua Liu Meteorological Institute of Shaanxi Province, Xi’an, China

Search for other papers by Guihua Liu in
Current site
Google Scholar
PubMed
Close
,
Jin Dai Meteorological Institute of Shaanxi Province, Xi’an, China

Search for other papers by Jin Dai in
Current site
Google Scholar
PubMed
Close
,
Xing Yu Meteorological Institute of Shaanxi Province, Xi’an, China

Search for other papers by Xing Yu in
Current site
Google Scholar
PubMed
Close
,
Yannian Zhu Meteorological Institute of Shaanxi Province, Xi’an, China

Search for other papers by Yannian Zhu in
Current site
Google Scholar
PubMed
Close
,
Eyal Hashimshoni Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by Eyal Hashimshoni in
Current site
Google Scholar
PubMed
Close
,
Xiaohong Xu Meteorological Institute of Shaanxi Province, Xi’an, China

Search for other papers by Xiaohong Xu in
Current site
Google Scholar
PubMed
Close
,
Ying Hui Meteorological Institute of Shaanxi Province, Xi’an, China

Search for other papers by Ying Hui in
Current site
Google Scholar
PubMed
Close
, and
Oliver Lauer Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany

Search for other papers by Oliver Lauer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The advent of the Visible Infrared Imager Radiometer Suite (VIIRS) on board the Suomi NPP (SNPP) satellite made it possible to retrieve a new class of convective cloud properties and the aerosols that they ingest. An automated mapping system of retrieval of some properties of convective cloud fields over large areas at the scale of satellite coverage was developed and is presented here. The system is named Automated Mapping of Convective Clouds (AMCC). The input is level-1 VIIRS data and meteorological gridded data. AMCC identifies the cloudy pixels of convective elements; retrieves for each pixel its temperature T and cloud drop effective radius re; calculates cloud-base temperature Tb based on the warmest cloudy pixels; calculates cloud-base height Hb and pressure Pb based on Tb and meteorological data; calculates cloud-base updraft Wb based on Hb; calculates cloud-base adiabatic cloud drop concentrations Nd,a based on the T–re relationship, Tb, and Pb; calculates cloud-base maximum vapor supersaturation S based on Nd,a and Wb; and defines Nd,a/1.3 as the cloud condensation nuclei (CCN) concentration NCCN at that S. The results are gridded 36 km × 36 km data points at nadir, which are sufficiently large to capture the properties of a field of convective clouds and also sufficiently small to capture aerosol and dynamic perturbations at this scale, such as urban and land-use features. The results of AMCC are instrumental in observing spatial covariability in clouds and CCN properties and for obtaining insights from such observations for natural and man-made causes. AMCC-generated maps are also useful for applications from numerical weather forecasting to climate models.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel Rosenfeld, daniel.rosenfeld@mail.huji.ac.il

Abstract

The advent of the Visible Infrared Imager Radiometer Suite (VIIRS) on board the Suomi NPP (SNPP) satellite made it possible to retrieve a new class of convective cloud properties and the aerosols that they ingest. An automated mapping system of retrieval of some properties of convective cloud fields over large areas at the scale of satellite coverage was developed and is presented here. The system is named Automated Mapping of Convective Clouds (AMCC). The input is level-1 VIIRS data and meteorological gridded data. AMCC identifies the cloudy pixels of convective elements; retrieves for each pixel its temperature T and cloud drop effective radius re; calculates cloud-base temperature Tb based on the warmest cloudy pixels; calculates cloud-base height Hb and pressure Pb based on Tb and meteorological data; calculates cloud-base updraft Wb based on Hb; calculates cloud-base adiabatic cloud drop concentrations Nd,a based on the T–re relationship, Tb, and Pb; calculates cloud-base maximum vapor supersaturation S based on Nd,a and Wb; and defines Nd,a/1.3 as the cloud condensation nuclei (CCN) concentration NCCN at that S. The results are gridded 36 km × 36 km data points at nadir, which are sufficiently large to capture the properties of a field of convective clouds and also sufficiently small to capture aerosol and dynamic perturbations at this scale, such as urban and land-use features. The results of AMCC are instrumental in observing spatial covariability in clouds and CCN properties and for obtaining insights from such observations for natural and man-made causes. AMCC-generated maps are also useful for applications from numerical weather forecasting to climate models.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel Rosenfeld, daniel.rosenfeld@mail.huji.ac.il
Save
  • Andreae, M. O., 2009: Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions. Atmos. Chem. Phys., 9, 543556, https://doi.org/10.5194/acp-9-543-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., and D. Rosenfeld, 2008: Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Sci. Rev., 89, 1341, https://doi.org/10.1016/j.earscirev.2008.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342, https://doi.org/10.1126/science.1092779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, B. A., and Q. Trepte, 1999: A grouped threshold approach for scene identification in AVHRR imagery. J. Atmos. Oceanic Technol., 16, 793800, https://doi.org/10.1175/1520-0426(1999)016<0793:AGTAFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beals, M. J., J. P. Fugal, R. A. Shaw, J. Lu, S. M. Spuler, and J. L. Stith, 2015: Holographic measurements of inhomogeneous cloud mixing at the centimeter scale. Science, 350, 8790, https://doi.org/10.1126/science.aab0751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braga, R. C., and Coauthors, 2017: Further evidence for CCN aerosol concentrations determining the height of warm rain and ice initiation in convective clouds over the Amazon basin. Atmos. Chem. Phys., 17, 14 43314 456, https://doi.org/10.5194/acp-17-14433-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J. L., F. Burnet, and O. Geoffroy, 2011: Cloud optical thickness and liquid water path—Does the k coefficient vary with droplet concentration? Atmos. Chem. Phys., 11, 97719786, https://doi.org/10.5194/acp-11-9771-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burnet, F., and J.-L. Brenguier, 2007: Observational study of the entrainment-mixing process in warm convective clouds. J. Atmos. Sci., 64, 19952011, https://doi.org/10.1175/JAS3928.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coakley, J. A., M. A. Friedman, and W. R. Tahnk, 2005: Retrieval of cloud properties for partly cloudy imager pixels. J. Atmos. Oceanic Technol., 22, 317, https://doi.org/10.1175/JTECH-1681.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, A. B., and A. Marshak, 2010: Solar radiation transport in the cloudy atmosphere: A 3D perspective on observations and climate impacts. Rep. Prog. Phys., 73, 026801, https://doi.org/10.1088/0034-4885/73/2/026801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freud, E., and D. Rosenfeld, 2012: Linear relation between convective cloud drop number concentration and depth for rain initiation. J. Geophys. Res., 117, D02207, https://doi.org/10.1029/2011JD016457.

    • Search Google Scholar
    • Export Citation
  • Freud, E., J. Ström, D. Rosenfeld, P. Tunved, and E. Swietlicki, 2008: Anthropogenic aerosol effects on convective cloud microphysical properties in southern Sweden. Tellus, 60B, 286297, https://doi.org/10.1111/j.1600-0889.2007.00337.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freud, E., D. Rosenfeld, and J. R. Kulkarni, 2011: Resolving both entrainment-mixing and number of activated CCN in deep convective clouds. Atmos. Chem. Phys., 11, 12 88712 900, https://doi.org/10.5194/acp-11-12887-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godin, R., 2014: Joint polar satellite system (JPSS) VIIRS cloud mask (VCM) algorithm theoretical basis document (ATBD). JPSS Ground Project Code 474 Rep. 474-00033 (Revision E), 117 pp., https://www.star.nesdis.noaa.gov/JPSS/documents/ATBD/D0001-M01-S01-011_JPSS_ATBD_VIIRS-Cloud-Mask_E.pdf.

  • Hillger, D., and Coauthors, 2013: First-light imagery from Suomi NPP VIIRS. Bull. Amer. Meteor. Soc., 94, 10191029, https://doi.org/10.1175/BAMS-D-12-00097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutchison, K. D., B. D. Iisager, and R. L. Mahoney, 2013: Enhanced snow and ice identification with the VIIRS cloud mask algorithm. Remote Sens. Lett., 4, 929936, https://doi.org/10.1080/2150704X.2013.815381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, T., 1985: On the temperature and effective emissivity determination of semi-transparent cirrus clouds by bi-spectral measurements in the 10 μm window region. J. Meteor. Soc. Japan Ser. II, 63, 8899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, T., 1987: An instantaneous delineation of convective rainfall areas using split window data of NOAA-7 AVHRR. J. Meteor. Soc. Japan Ser. II, 65, 469481, https://www.jstage.jst.go.jp/article/jmsj1965/65/3/65_3_469/_pdf/-char/en.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., and T. Nakajima, 1993: Effect of amazon smoke on cloud microphysics and albedo-analysis from satellite imagery. J. Appl. Meteor., 32, 729744, https://doi.org/10.1175/1520-0450(1993)032<0729:EOASOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konwar, M., R. S. Maheskumar, J. R. Kulkarni, E. Freud, B. N. Goswami, and D. Rosenfeld, 2012: Aerosol control on depth of warm rain in convective clouds. J. Geophys. Res., 117, D13204, https://doi.org/10.1029/2012JD017585.

    • Search Google Scholar
    • Export Citation
  • Kopp, T. J., and Coauthors, 2014: The VIIRS Cloud Mask: Progress in the first year of S-NPP toward a common cloud detection scheme. J. Geophys. Res. Atmos., 119, 24412456, https://doi.org/10.1002/2013JD020458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lensky, I. M., and D. Rosenfeld, 1997: Estimation of precipitation area and rain intensity based on the microphysical properties retrieved from NOAA AVHRR data. J. Appl. Meteor., 36, 234242, https://doi.org/10.1175/1520-0450(1997)036<0234:EOPAAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lensky, I. M., and D. Rosenfeld, 2006: The time–space exchangeability of satellite retrieved relations between cloud top temperature and particle effective radius. Atmos. Chem. Phys., 6, 28872894, https://doi.org/10.5194/acp-6-2887-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lensky, I. M., and D. Rosenfeld, 2008: Clouds–aerosols–precipitation satellite analysis tool (CAPSAT). Atmos. Chem. Phys., 8, 67396753, https://doi.org/10.5194/acp-8-6739-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshak, A., and A. B. Davis, Eds., 2005: 3D Radiative Transfer in Cloudy Atmospheres. Springer, https://doi.org/10.1007/3-540-28519-9.

    • Crossref
    • Export Citation
  • Marshak, A., S. Platnick, T. Várnai, G. Wen, and R. F. Cahalan, 2006: Impact of three-dimensional radiative effects on satellite retrievals of cloud droplet sizes. J. Geophys. Res. Atmos., 111, D09207, https://doi.org/10.1029/2005JD006686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merk, D., H. Deneke, B. Pospichal, and P. Seifert, 2016: Investigation of the adiabatic assumption for estimating cloud micro- and macrophysical properties from satellite and ground observations. Atmos. Chem. Phys., 16, 933952, https://doi.org/10.5194/acp-16-933-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, K., Y. Ping, and G. Bo-Cai, 2004: Optical thickness of tropical cirrus clouds derived from the MODIS 0.66 and 1.375 μm channels. IEEE Trans. Geosci. Remote, 42, 833841, https://doi.org/10.1109/TGRS.2003.818939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D. J., Z. Zhang, A. S. Ackerman, S. Platnick, and B. A. Baum, 2016: The impact of cloud vertical profile on liquid water path retrieval based on the bispectral method: A theoretical study based on large-eddy simulations of shallow marine boundary layer clouds. J. Geophys. Res. Atmos., 121, 41224141, https://doi.org/10.1002/2015JD024322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, Q., and Coauthors, 2012: Comparison of MODIS cloud microphysical properties with in-situ measurements over the southeast Pacific. Atmos. Chem. Phys., 12, 11 26111 273, https://doi.org/10.5194/acp-12-11261-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., 1979: The entrainment mechanism in Colorado cumuli. J. Atmos. Sci., 36, 24672478, https://doi.org/10.1175/1520-0469(1979)036<2467:TEMICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. Khain, I. Mazin, and A. Korolev, 2012: Analytical estimation of droplet concentration at cloud base. J. Geophys. Res., 117, D18211, https://doi.org/10.1029/2012JD017753.

    • Search Google Scholar
    • Export Citation
  • Prabha, T. V., A. Khain, R. S. Maheshkumar, G. Pandithurai, J. R. Kulkarni, M. Konwar, and B. N. Goswami, 2011: Microphysics of premonsoon and monsoon clouds as seen from in situ measurements during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX). J. Atmos. Sci., 68, 18821901, https://doi.org/10.1175/2011JAS3707.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quaas, J., B. Stevens, P. Stier, and U. Lohmann, 2010: Interpreting the cloud cover–aerosol optical depth relationship found in satellite data using a general circulation model. Atmos. Chem. Phys., 10, 61296135, https://doi.org/10.5194/acp-10-6129-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 31053108, https://doi.org/10.1029/1999GL006066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 2018: Cloud–aerosol–precipitation interactions based of satellite retrieved vertical profiles of cloud microstructure. Remote Sensing of Aerosols, Clouds, and Precipitation, Y. Hu, A. Kokhanovsky, and J. Wang, Eds., Elsevier, 129–152, https://doi.org/10.1016/B978-0-12-810437-8.00006-2.

    • Crossref
    • Export Citation
  • Rosenfeld, D., and G. Gutman, 1994: Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR data. Atmos. Res., 34, 259283, https://doi.org/10.1016/0169-8095(94)90096-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 24572476, https://doi.org/10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and W. L. Woodley, 2000: Deep convective clouds with sustained supercooled liquid water down to −37.5°C. Nature, 405, 440442, https://doi.org/10.1038/35013030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., E. Cattani, S. Melani, and V. Levizzani, 2004: Considerations on daylight operation of 1.6- versus 3.7-μm channel on NOAA and METOP satellites. Bull. Amer. Meteor. Soc., 85, 873882, https://doi.org/10.1175/BAMS-85-6-873.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, T. W. Krauss, and V. Makitov, 2006: Aircraft microphysical documentation from cloud base to anvils of hailstorm feeder clouds in Argentina. J. Appl. Meteor. Climatol., 45, 12611281, https://doi.org/10.1175/JAM2403.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, A. Lerner, G. Kelman, and D. T. Lindsey, 2008a: Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase. J. Geophys. Res., 113, D04208, https://doi.org/10.1029/2007JD008600.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, D. Axisa, E. Freud, J. G. Hudson, and A. Givati, 2008b: Aircraft measurements of the impacts of pollution aerosols on clouds and precipitation over the Sierra Nevada. J. Geophys. Res., 113, D15203, https://doi.org/10.1029/2007JD009544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and Coauthors, 2011: Glaciation temperatures of convective clouds ingesting desert dust, air pollution and smoke from forest fires. Geophys. Res. Lett., 38, L21804, https://doi.org/10.1029/2011GL049423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., B. Fischman, Y. Zheng, T. Goren, and D. Giguzin, 2014a: Combined satellite and radar retrievals of drop concentration and CCN at convective cloud base. Geophys. Res. Lett., 41, 32593265, https://doi.org/10.1002/2014GL059453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., G. Liu, X. Yu, Y. Zhu, J. Dai, X. Xu, and Z. Yue, 2014b: High resolution (375 m) cloud microstructure as seen from the NPP/VIIRS satellite imager. Atmos. Chem. Phys., 14, 24792496, https://doi.org/10.5194/acp-14-2479-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and Coauthors, 2016: Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers. Proc. Natl. Acad. Sci. USA, 113, 58285834, https://doi.org/10.1073/pnas.1514044113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roskovensky, J. K., and K. N. Liou, 2003: Detection of thin cirrus from 1.38 μm/0.65 μm reflectance ratio combined with 8.6–11 μm brightness temperature difference. Geophys. Res. Lett., 30, 1985, https://doi.org/10.1029/2003GL018135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, https://doi.org/10.1038/nature08281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stier, P., 2016: Limitations of passive remote sensing to constrain global cloud condensation nuclei. Atmos. Chem. Phys., 16, 65956607, https://doi.org/10.5194/acp-16-6595-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Várnai, T., and A. Marshak, 2009: MODIS observations of enhanced clear sky reflectance near clouds. Geophys. Res. Lett., 36, L06807, https://doi.org/10.1029/2008GL037089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, T., J. V. Martins, Z. Li, and L. A. Remer, 2010: Estimating glaciation temperature of deep convective clouds with remote sensing data. Geophys. Res. Lett., 37, L08808, https://doi.org/10.1029/2010GL042753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., A. S. Ackerman, G. Feingold, S. Platnick, R. Pincus, and H. Xue, 2012: Effects of cloud horizontal inhomogeneity and drizzle on remote sensing of cloud droplet effective radius: Case studies based on large-eddy simulations. J. Geophys. Res., 117, D19208, https://doi.org/10.1029/2012JD017655.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., and D. Rosenfeld, 2015: Linear relation between convective cloud base height and updrafts and application to satellite retrievals. Geophys. Res. Lett., 42, 64856491, https://doi.org/10.1002/2015GL064809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y., D. Rosenfeld, and Z. Li, 2015: Satellite inference of thermals and cloud-base updraft speeds based on retrieved surface and cloud-base temperatures. J. Atmos. Sci., 72, 24112428, https://doi.org/10.1175/JAS-D-14-0283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y., D. Rosenfeld, and Z. Li, 2016: Quantifying cloud base updraft speeds of marine stratocumulus from cloud top radiative cooling. Geophys. Res. Lett., 43, 11 40711 413, https://doi.org/10.1002/2016GL071185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., D. Rosenfeld, X. Yu, G. Liu, J. Dai, and X. Xu, 2014: Satellite retrieval of convective cloud base temperature based on the NPP/VIIRS Imager. Geophys. Res. Lett., 41, 13081313, https://doi.org/10.1002/2013GL058970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., D. Rosenfeld, X. Yu, and Z. Li, 2015: Separating aerosol microphysical effects and satellite measurement artifacts of the relationships between warm rain onset height and aerosol optical depth. J. Geophys. Res., 120, 77267736, https://doi.org/10.1002/2015JD023547.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 833 252 14
PDF Downloads 522 131 12