Ambient Factors Controlling the Wintertime Precipitation Distribution across Mountain Ranges in the Interior Western United States. Part II: Changes in Orographic Precipitation Distribution in a Pseudo–Global Warming Simulation

Xiaoqin Jing Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Xiaoqin Jing in
Current site
Google Scholar
PubMed
Close
,
Bart Geerts Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Bart Geerts in
Current site
Google Scholar
PubMed
Close
,
Yonggang Wang Department of Geosciences, Texas Tech University, Lubbock, Texas

Search for other papers by Yonggang Wang in
Current site
Google Scholar
PubMed
Close
, and
Changhai Liu National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Changhai Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two high-resolution (4 km) regional climate simulations over a 10-yr period are conducted to study the changes in wintertime precipitation distribution across mountain ranges in the interior western United States (IWUS) in a warming climate. One simulation represents the current climate, and another represents an ~2050 climate using a pseudo–global warming approach. The climate perturbations are derived from the ensemble mean of 15 global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). These simulations provide an estimate of average changes in wintertime orographic precipitation enhancement and finescale distribution across mountain ranges. The variability in these changes among CMIP5 models is quantified using statistical downscaling relations between orographic precipitation distribution and upstream conditions, developed in Part I. The CMIP5 guidance indicates a robust warming signal (~2 K) over the IWUS by ~2050 but minor changes in relative humidity and cloud-base height. The IWUS simulations reveal a widespread increase in precipitation on account of higher precipitation rates during winter storms in this warmer climate. This precipitation increase is most significant over the mountains rather than on the surrounding plains. The increase in precipitation rate is largely due to an increase in low-level cross-mountain moisture transport. The application of the statistical relations indicates that individual CMIP5 models disagree about the magnitude and distribution of orographic precipitation change in the IWUS, although most agree with the ensemble-mean-predicted orographic precipitation increase.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bart Geerts, geerts@uwyo.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAMC-D-17-0291.1

Abstract

Two high-resolution (4 km) regional climate simulations over a 10-yr period are conducted to study the changes in wintertime precipitation distribution across mountain ranges in the interior western United States (IWUS) in a warming climate. One simulation represents the current climate, and another represents an ~2050 climate using a pseudo–global warming approach. The climate perturbations are derived from the ensemble mean of 15 global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). These simulations provide an estimate of average changes in wintertime orographic precipitation enhancement and finescale distribution across mountain ranges. The variability in these changes among CMIP5 models is quantified using statistical downscaling relations between orographic precipitation distribution and upstream conditions, developed in Part I. The CMIP5 guidance indicates a robust warming signal (~2 K) over the IWUS by ~2050 but minor changes in relative humidity and cloud-base height. The IWUS simulations reveal a widespread increase in precipitation on account of higher precipitation rates during winter storms in this warmer climate. This precipitation increase is most significant over the mountains rather than on the surrounding plains. The increase in precipitation rate is largely due to an increase in low-level cross-mountain moisture transport. The application of the statistical relations indicates that individual CMIP5 models disagree about the magnitude and distribution of orographic precipitation change in the IWUS, although most agree with the ensemble-mean-predicted orographic precipitation increase.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bart Geerts, geerts@uwyo.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAMC-D-17-0291.1

Save
  • Bender, F. A.-M., V. Ramanathan, and G. Tselioudis, 2012: Changes in extratropical storm track cloudiness 1983–2008: Observational support for a poleward shift. Climate Dyn., 38, 20372053, https://doi.org/10.1007/s00382-011-1065-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588606, https://doi.org/10.1175/1520-0469(2004)061<0588:SOOPTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, T., D. W. Pierce, D. R. Cayan, J. A. Vano, and D. P. Lettenmaier, 2011: The importance of warm season warming to western US streamflow changes. Geophys. Res. Lett., 38, L23403, https://doi.org/10.1029/2011GL049660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., L. Terray, and A. S. Phillips, 2016: Forced and internal components of winter air temperature trends over North America during the past 50 years: Mechanisms and implications. J. Climate, 29, 22372258, https://doi.org/10.1175/JCLI-D-15-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M., 2014: Climate change: Impacts in the third dimension. Nat. Geosci., 7, 166167, https://doi.org/10.1038/ngeo2096.

  • Eidhammer, T., V. Grubišić, R. Rasmussen, and K. Ikeda, 2018: Winter precipitation efficiency of mountain ranges in the Colorado Rockies under climate change. J. Geophys. Res. Atmos., 123, 25732590, https://doi.org/10.1002/2017JD027995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, G., M. E. Barber, and S. Chen, 2010: Hydro-climatic variability and trends in Washington State for the last 50 years. Hydrol. Processes, 24, 866878, https://doi.org/10.1002/hyp.7527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garvert, M. F., B. Smull, and C. Mass, 2007: Multiscale mountain waves influencing a major orographic precipitation event. J. Atmos. Sci., 64, 711737, https://doi.org/10.1175/JAS3876.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., Y. Yang, R. Rasmussen, S. Haimov, and B. Pokharel, 2015: Snow growth and transport patterns in orographic storms as estimated from airborne vertical-plane dual-Doppler radar data. Mon. Wea. Rev., 143, 644665, https://doi.org/10.1175/MWR-D-14-00199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutmann, E. D., J. Hamman, T. Eidhammer, K. Nowak, J. Arnold, and M. P. Clark, 2017: Leveraging past climate variability to inform methodological choices and improve hydrologic projections. 2017 Fall Meeting, New Orleans, LA, Amer. Geophys. Union, Abstract H42C-01, https://agu.confex.com/agu/fm17/meetingapp.cgi/Paper/209730.

  • Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, https://doi.org/10.1029/2011RG000365.

  • Hurrell, J., M. Visbeck, and A. Pirani, 2011: WCRP Coupled Model Intercomparison Project—Phase 5. CLIVAR Exchanges, No. 56, CLIVAR Project Office, Southampton, United Kingdom, 51 pp., https://www.gfdl.noaa.gov/bibliography/related_files/CLIVAR_Exchange_16_2_2011.pdf.

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, C. N., and R. A. Houze Jr., 2005: Modification of precipitation by coastal orography in storms crossing Northern California. Mon. Wea. Rev., 133, 31103131, https://doi.org/10.1175/MWR3019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jimenez, P. A., J. J. Dudhia, F. Gonzalez-Rouco, J. Navarro, J. P. Montavez, and E. Garcia-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, X., B. Geerts, Y. Wang, and C. Liu, 2017: Evaluating seasonal orographic precipitation in the interior western United States using gauge data, gridded precipitation estimates, and a regional climate simulation. J. Hydrometeor., 18, 25412558, https://doi.org/10.1175/JHM-D-17-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, X., Y. Geerts, Y. Wang, and C. Liu, 2018: Ambient factors controlling the wintertime precipitation distribution across mountain ranges in the interior western United States. Part I: Insights from regional climate simulations. J. Appl. Meteor. Climatol., 57, 19311954, https://doi.org/10.1175/JAMC-D-17-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and R. B. Smith, 2008: Temperature and moist-stability effects on midlatitude orographic precipitation. Quart. J. Roy. Meteor. Soc., 134, 11831199, https://doi.org/10.1002/qj.274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letcher, T. W., and J. R. Minder, 2015: Characterization of the simulated regional snow albedo feedback using a regional climate model over complex terrain. J. Climate, 28, 75767595, https://doi.org/10.1175/JCLI-D-15-0166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and Coauthors, 2017: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn., 49, 7195, https://doi.org/10.1007/s00382-016-3327-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, https://doi.org/10.1029/2006JD008087.

    • Search Google Scholar
    • Export Citation
  • Luce, C. H., J. T. Abatzoglou, and Z. A. Holden, 2013: The missing mountain water: Slower westerlies decrease orographic enhancement in the Pacific Northwest USA. Science, 342, 13601364, https://doi.org/10.1126/science.1242335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., J. Betancourt, M. Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P. Lettenmaier, and R. J. Stouffer, 2008: Stationarity is dead: Whither water management? Science, 319, 573574, https://doi.org/10.1126/science.1151915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., D. R. Durran, G. H. Roe, and A. M. Anders, 2008: The climatology of small-scale orographic precipitation over the Olympic Mountains: Patterns and processes. Quart. J. Roy. Meteor. Soc., 134, 817839, https://doi.org/10.1002/qj.258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., A. F. Hamlet, M. P. Clark, and D. P. Lettenmaier, 2005: Declining mountain snowpack in western North America. Bull. Amer. Meteor. Soc., 86, 3949, https://doi.org/10.1175/BAMS-86-1-39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panziera, L., and U. Germann, 2010: The relationship between airflow and orographic precipitation in the Southern Alps as revealed by weather radar. Quart. J. Roy. Meteor. Soc., 136, 222238, https://doi.org/10.1002/qj.544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, https://doi.org/10.1175/2010JCLI3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2014: Climate change impacts on the water balance of the Colorado Headwaters: High-resolution regional climate model simulations. J. Hydrometeor., 15, 10911116, https://doi.org/10.1175/JHM-D-13-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riahi, K., and Coauthors, 2011: RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109, 33, https://doi.org/10.1007/s10584-011-0149-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär C., C. Frei, D. Lüthi, and H. C. Davies, 1996: Surrogate climate-change scenarios for regional climate models. Geophys. Res. Lett., 23, 669672, https://doi.org/10.1029/96GL00265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X., and D. R. Durran, 2014: The response of orographic precipitation over idealized midlatitude mountains due to global increases in CO2. J. Climate, 27, 39383956, https://doi.org/10.1175/JCLI-D-13-00460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siler, N., and G. Roe, 2014: How will orographic precipitation respond to surface warming? An idealized thermodynamic perspective. Geophys. Res. Lett., 41, 26062613, https://doi.org/10.1002/2013GL059095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., B. Geerts, and C. Liu, 2018: A 30-year convection-permitting regional climate simulation over the Interior Western United States. Part I: Validation. Int. J. Climatol., 38, 36843704, https://doi.org/10.1002/joc.5527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C., X. Liu, Z. Lin, S. R. Rahimi-Esfarjani, and Z. Lu, 2018: Impacts of absorbing aerosol deposition on snowpack and hydrologic cycle in the Rocky Mountain region based on variable-resolution CESM (VR-CESM) simulations. Atmos. Chem. Phys., 18, 511, https://doi.org/10.5194/acp-18-511-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, https://doi.org/10.1029/2010JD015140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., D. A. Stark, J. A. Crouch, M. Jordan Payne, and B. A. Colle, 2011: The impact of varying environmental conditions on the spatial and temporal patterns of orographic precipitation over the Pacific Northwest near Portland, Oregon. J. Hydrometeor., 12, 329351, https://doi.org/10.1175/2010JHM1239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2008: The temperature dependence of small-scale orographic precipitation enhancement. Quart. J. Roy. Meteor. Soc., 134, 11671181, https://doi.org/10.1002/qj.267.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 879 151 13
PDF Downloads 567 216 6