Observations of Turbulent Heat and Momentum Fluxes during Wildland Fires in Forested Environments

Warren E. Heilman Northern Research Station, USDA Forest Service, Lansing, Michigan

Search for other papers by Warren E. Heilman in
Current site
Google Scholar
PubMed
Close
,
Xindi Bian Northern Research Station, USDA Forest Service, Lansing, Michigan

Search for other papers by Xindi Bian in
Current site
Google Scholar
PubMed
Close
,
Kenneth L. Clark Northern Research Station, USDA Forest Service, New Lisbon, New Jersey

Search for other papers by Kenneth L. Clark in
Current site
Google Scholar
PubMed
Close
, and
Shiyuan Zhong Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, Michigan

Search for other papers by Shiyuan Zhong in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Turbulent fluxes of heat and momentum in the vicinity of wildland fires contribute to the redistribution of heat and momentum in the fire environment, which in turn can affect the heating of fuels, fire behavior, and smoke dispersion. As an extension of previous observational studies of turbulence regimes in the vicinity of wildland fires in forested environments, this study examines the effects of spreading surface fires and forest overstory vegetation on turbulent heat and momentum fluxes from near the surface to near the top of the overstory vegetation. Profiles of high-frequency (10 Hz) wind velocity and temperature measurements during two prescribed fire experiments are used to assess the relative contributions of horizontal and vertical turbulent fluxes of heat and momentum to the total heat and momentum flux fields. The frequency-dependent temporal variability of the turbulent heat and momentum fluxes before, during, and after fire-front passage is also examined using cospectral analyses. The study results highlight the effects that surface wildland fires and forest overstory vegetation collectively can have on the temporal and vertical variability of turbulent heat and momentum fluxes in the vicinity of the fires and the substantial departures of heat and momentum cospectra from typical atmospheric surface-layer cospectra that can occur before, during, and after fire-front passage.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Warren E. Heilman, wheilman@fs.fed.us

Abstract

Turbulent fluxes of heat and momentum in the vicinity of wildland fires contribute to the redistribution of heat and momentum in the fire environment, which in turn can affect the heating of fuels, fire behavior, and smoke dispersion. As an extension of previous observational studies of turbulence regimes in the vicinity of wildland fires in forested environments, this study examines the effects of spreading surface fires and forest overstory vegetation on turbulent heat and momentum fluxes from near the surface to near the top of the overstory vegetation. Profiles of high-frequency (10 Hz) wind velocity and temperature measurements during two prescribed fire experiments are used to assess the relative contributions of horizontal and vertical turbulent fluxes of heat and momentum to the total heat and momentum flux fields. The frequency-dependent temporal variability of the turbulent heat and momentum fluxes before, during, and after fire-front passage is also examined using cospectral analyses. The study results highlight the effects that surface wildland fires and forest overstory vegetation collectively can have on the temporal and vertical variability of turbulent heat and momentum fluxes in the vicinity of the fires and the substantial departures of heat and momentum cospectra from typical atmospheric surface-layer cospectra that can occur before, during, and after fire-front passage.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Warren E. Heilman, wheilman@fs.fed.us
Save
  • Amiro, B. D., 1990: Drag coefficients and turbulence spectra within three boreal forest canopies. Bound.-Layer Meteor., 52, 227246, https://doi.org/10.1007/BF00122088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D. D., and T. P. Meyers, 1988: Turbulence structure in a deciduous forest. Bound.-Layer Meteor., 43, 345364, https://doi.org/10.1007/BF00121712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanken, P. D., and Coauthors, 1998: Turbulent flux measurements above and below the overstory of a boreal aspen forest. Bound.-Layer Meteor., 89, 109140, https://doi.org/10.1023/A:1001557022310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byram, G. M., 1959: Combustion of forest fuels. Forest Fire: Control and Use, 1st ed. K. P. Davis, Ed., McGraw-Hill, 61–89.

  • Clements, C. B., and D. Seto, 2015: Observations of fire–atmosphere interactions and near-surface heat transport on a slope. Bound.-Layer Meteor., 154, 409426, https://doi.org/10.1007/s10546-014-9982-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clements, C. B., and Coauthors, 2007: Observing the dynamics of wildland grass fires. Bull. Amer. Meteor. Soc., 88, 13691382, https://doi.org/10.1175/BAMS-88-9-1369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clements, C. B., S. Zhong, X. Bian, W. E. Heilman, and D. W. Byun, 2008: First observations of turbulence generated by grass fires. J. Geophys. Res., 113, D22102, https://doi.org/10.1029/2008JD010014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clements, C. B., and Coauthors, 2016: Fire weather conditions and fire–atmosphere interactions observed during low-intensity prescribed fires—RxCADRE 2012. Int. J. Wildland Fire, 25, 90101, https://doi.org/10.1071/WF14173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dupuy, J. L., and M. Larini, 1999: Fire spread through a porous forest fuel bed: A radiative and convective model including fire-induced flow effects. Int. J. Wildland Fire, 9, 155172, https://doi.org/10.1071/WF00006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finney, M. A., and Coauthors, 2015: Role of buoyant flame dynamics in wildfire spread. Proc. Natl. Acad. Sci. USA, 112, 98339838, https://doi.org/10.1073/pnas.1504498112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankman, D., and Coauthors, 2013: Measurements of convective and radiative heating in wildland fires. Int. J. Wildland Fire, 22, 157167, https://doi.org/10.1071/WF11097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodrick, S. L., G. L. Achtemeier, N. K. Larkin, Y. Liu, and T. M. Strand, 2013: Modelling smoke transport from wildland fires: A review. Int. J. Wildland Fire, 22, 8394, https://doi.org/10.1071/WF11116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heilman, W. E., and Coauthors, 2013: Development of modeling tools for predicting smoke dispersion from low-intensity fires. U.S. Joint Fire Science Program Project 09-1-04-1 Final Rep., 64 pp., https://www.firescience.gov/projects/09-1-04-1/project/09-1-04-1_final_report.pdf.

  • Heilman, W. E., C. B. Clements, D. Seto, X. Bian, K. L. Clark, N. S. Skowronski, and J. L. Hom, 2015: Observations of fire-induced turbulence regimes during low-intensity wildland fires in forested environments: Implications for smoke dispersion. Atmos. Sci. Lett., 16, 453460, https://doi.org/10.1002/asl.581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heilman, W. E., X. Bian, K. L. Clark, N. S. Skowronski, J. L. Hom, and M. R. Gallagher, 2017: Atmospheric turbulence observations in the vicinity of surface fires in forested environments. J. Appl. Meteor. Climatol., 56, 31333150, https://doi.org/10.1175/JAMC-D-17-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., J. C. Wyngaard, Y. Izumi, and O. R. Coté, 1972: Spectral characteristics of surface-layer turbulence. Quart. J. Roy. Meteor. Soc., 98, 563589, https://doi.org/10.1002/qj.49709841707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katul, G., and Coauthors, 1999: Spatial variability of turbulent fluxes in the roughness sublayer of an even-aged pine forest. Bound.-Layer Meteor., 93, 128, https://doi.org/10.1023/A:1002079602069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiefer, M. T., and Coauthors, 2014: Multiscale simulation of a prescribed fire event in the New Jersey Pine Barrens using ARPS-CANOPY. J. Appl. Meteor. Climatol., 53, 793812, https://doi.org/10.1175/JAMC-D-13-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiefer, M. T., W. E. Heilman, S. Zhong, J. J. Charney, and X. Bian, 2015: Mean and turbulent flow downstream of a low-intensity fire: Influence of canopy and background atmospheric conditions. J. Appl. Meteor. Climatol., 54, 4257, https://doi.org/10.1175/JAMC-D-14-0058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 30, 299303.

    • Search Google Scholar
    • Export Citation
  • Mandel, J., J. D. Beezley, J. L. Coen, and M. Kim, 2009: Data assimilation for wildland fires: Ensemble Kalman filters in coupled atmosphere-surface models. IEEE Contr. Syst. Mag., 29, 4765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miranda, A. I., 2004: An integrated numerical system to estimate air quality effects of forest fires. Int. J. Wildland Fire, 13, 217226, https://doi.org/10.1071/WF02047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morandini, F., and X. Silvani, 2010: Experimental investigation of the physical mechanisms governing the spread of wildfires. Int. J. Wildland Fire, 19, 570582, https://doi.org/10.1071/WF08113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moraes, O. L. L., D. R. Fitzjarrald, O. C. Acevedo, R. K. Sakai, M. J. Czilkowsky, and G. A. Degrazia, 2008: Comparing spectra and cospectra of turbulence over difference surface boundary conditions. Physica A, 387, 49274939, https://doi.org/10.1016/j.physa.2008.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morvan, D., and J. L. Dupuy, 2004: Modeling the propagation of a wildfire through a Mediterranean shrub using a multiphase formulation. Combust. Flame, 138, 199210, https://doi.org/10.1016/j.combustflame.2004.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, R. M., B. W. Butler, and D. R. Weise, 2012: Entrainment regimes and flame characteristics of wildland fires. Int. J. Wildland Fire, 21, 127140, https://doi.org/10.1071/WF10034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ottmar, R. D., and Coauthors, 2016: Measurements, datasets and preliminary results from the RxCADRE project—2008, 2011 and 2012. Int. J. Wildland Fire, 25, 19, https://doi.org/10.1071/WF14161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patton, E. G., P. P. Sullivan, and K. J. Davis, 2003: The influence of a forest canopy on top-down and bottom-up diffusion in the planetary boundary layer. Quart. J. Roy. Meteor. Soc., 129, 14151434, https://doi.org/10.1256/qj.01.175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pimont, F., J. L. Dupuy, R. R. Linn, and S. Dupont, 2009: Validation of FIRETEC wind-flows over a canopy and a fuel-break. Int. J. Wildland Fire, 18, 775790, https://doi.org/10.1071/WF07130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, B. E., 2002: A dynamics based view of atmosphere-fire interactions. Int. J. Wildland Fire, 11, 247255, https://doi.org/10.1071/WF02008.

  • Press, W. H., and G. B. Rybicki, 1989: Fast algorithm for spectral analysis of unevenly sampled data. Astrophys. J., 338, 277280, https://doi.org/10.1086/167197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., J. J. Finnigan, and Y. Brunet, 1996: Coherent eddies and turbulence in vegetation canopies: The mixing layer analogy. Bound.-Layer Meteor., 78, 351382, https://doi.org/10.1007/BF00120941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scargle, J. D., 1982: Studies in astronomical time series: II—Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J., 263, 835853, https://doi.org/10.1086/160554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seto, D., and C. B. Clements, 2011: Fire whirl evolution observed during a valley wind-sea breeze reversal. J. Combust., 2011, https://doi.org/10.1155/2011/569475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seto, D., C. B. Clements, and W. E. Heilman, 2013: Turbulence spectra measured during fire front passage. Agric. For. Meteor., 169, 195210, https://doi.org/10.1016/j.agrformet.2012.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seto, D., T. M. Strand, C. B. Clements, H. Thistle, and R. Mickler, 2014: Wind and plume thermodynamic structures during low-intensity subcanopy fires. Agric. For. Meteor., 198–199, 5361, https://doi.org/10.1016/j.agrformet.2014.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, R. H., R. H. Silversides, and G. W. Thurtell, 1974: Some observations of turbulence and turbulent transport within and above plant canopies. Bound.-Layer Meteor., 5, 429449, https://doi.org/10.1007/BF00123490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, C. C., J. J. Sharples, and J. P. Evans, 2016: Sensitivity of atypical lateral fire spread to wind and slope. Geophys. Res. Lett., 43, 17441751, https://doi.org/10.1002/2015GL067343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

    • Crossref
    • Export Citation
  • Sun, R., S. K. Krueger, M. A. Jenkins, M. A. Zulauf, and J. J. Charney, 2009: The importance of fire–atmosphere coupling and boundary-layer turbulence to wildfire spread. Int. J. Wildland Fire, 18, 5060, https://doi.org/10.1071/WF07072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., S. P. Oncley, and S. A. Stage, 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99, 127150, https://doi.org/10.1023/A:1018966204465.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 400 118 6
PDF Downloads 344 107 6