Variations in Surface Albedo Arising from Flooding and Desiccation Cycles on the Bonneville Salt Flats, Utah

Kevin M. Craft Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Kevin M. Craft in
Current site
Google Scholar
PubMed
Close
and
John D. Horel Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by John D. Horel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Desert playas, such as those in northern Utah, form a landscape often in stark contrast to surrounding mountain ranges due to their minimal topographic relief, lack of vegetation, and saline soils. Dry highly reflective halite surfaces, which make up many of the desert playas in northern Utah, are generally characterized by a surface albedo over 40%. However, their albedo can be reduced abruptly to less than 20% by flooding due to rainfall, runoff from surrounding higher terrain, or surface winds transporting shallow water across the playas. A weather station installed during September 2016 to study the Bonneville Salt Flats (BSF) in northern Utah provides estimates of surface albedo that can be related to cycles of flooding and desiccation of the halite surface. The normalized difference water index (NDWI) derived from the MODIS MOD09A1 land surface reflectance product estimates the fractional coverage of surface water over the BSF. NDWI values computed over 8-day periods from 2000 to 2018 highlight year-to-year and seasonal variations in playa flooding events over the BSF. Periods of playa flooding were observed with both ground-based observations and NDWI with sharp reductions in albedo when the surface is flooded.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kevin M. Kraft, kevin.craft.utah@gmail.com

Abstract

Desert playas, such as those in northern Utah, form a landscape often in stark contrast to surrounding mountain ranges due to their minimal topographic relief, lack of vegetation, and saline soils. Dry highly reflective halite surfaces, which make up many of the desert playas in northern Utah, are generally characterized by a surface albedo over 40%. However, their albedo can be reduced abruptly to less than 20% by flooding due to rainfall, runoff from surrounding higher terrain, or surface winds transporting shallow water across the playas. A weather station installed during September 2016 to study the Bonneville Salt Flats (BSF) in northern Utah provides estimates of surface albedo that can be related to cycles of flooding and desiccation of the halite surface. The normalized difference water index (NDWI) derived from the MODIS MOD09A1 land surface reflectance product estimates the fractional coverage of surface water over the BSF. NDWI values computed over 8-day periods from 2000 to 2018 highlight year-to-year and seasonal variations in playa flooding events over the BSF. Periods of playa flooding were observed with both ground-based observations and NDWI with sharp reductions in albedo when the surface is flooded.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kevin M. Kraft, kevin.craft.utah@gmail.com
Save
  • Barnes, W. L., T. S. Pagano, and V. V. Salomonson, 1998: Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens., 36, 10881100, https://doi.org/10.1109/36.700993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blaylock, B. K., J. D. Horel, and E. T. Crosman, 2017: Impact of lake breezes on summer ozone concentrations in the Salt Lake Valley. J. Appl. Meteor. Climatol., 56, 353370, https://doi.org/10.1175/JAMC-D-16-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boussetta, S., E. Balsamo, E. Dutra, A. Beljaars, and C. Albergel, 2015: Assimilation of surface albedo and vegetation states from satellite observations and their impact on numerical weather prediction. Remote Sens. Environ., 163, 111126, https://doi.org/10.1016/j.rse.2015.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowen, B. B., E. L. Kipnis, and L. W. Raming, 2017: Temporal dynamics of flooding, evaporation, and desiccation cycles and observations of salt crust area change at the Bonneville Salt Flats, Utah. Geomorphology, 299, 111, https://doi.org/10.1016/j.geomorph.2017.09.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campos, J. C., N. Sillero, and J. C. Brito, 2012: Normalized difference water indexes have dissimilar performances in detecting seasonal and permanent water in the Sahara–Sahel transition zone. J. Hydrol., 464–465, 438446, https://doi.org/10.1016/j.jhydrol.2012.07.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129, 587604, https://doi.org/10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., S. Liang, Y. Cao, T. He, and D. Wang, 2015: Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001–2014. Sci. Rep., 5, 16820, https://doi.org/10.1038/srep16820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craft, K., 2018: Influence on the atmosphere of short-term variations in the surface state of the Bonnevile Salt Flats, Utah. M.S. thesis, Department of Atmospheric Sciences, University of Utah, 62 pp.

  • Doña, C., and Coauthors, 2016: Monitoring hydrological patterns of temporary lakes using remote sensing and machine learning models: Case study of La Mancha Húmeda Biosphere Reserve in central Spain. Remote Sens., 8, 618636, https://doi.org/10.3390/rs8080618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P., X. Meng, and M. F. McCabe, 2017: Land surface albedo and vegetation feedbacks enhanced the millennium drought in south-east Australia. Hydrol. Earth Syst. Sci., 21, 409422, https://doi.org/10.5194/hess-21-409-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, R., X. Guan, Y. He, Z. Gan, and H. Jin, 2018: Different roles of dynamic and thermodynamic effects in enhanced semi-arid warming. Int. J. Climatol., 38, 1322, https://doi.org/10.1002/joc.5155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hang, C., D. F. Nadeau, D. D. Jensen, S. W. Hoch, and E. R. Pardyjak, 2016: Playa soil moisture and evaporation dynamics during the MATERHORN Field Program. Bound.-Layer Meteor., 159, 521538, https://doi.org/10.1007/s10546-015-0058-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., and M. F. Wilson, 1983: Surface albedo data for climate modeling. Rev. Geophys. Space, 21, 17431778, https://doi.org/10.1029/RG021i008p01743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J., and Coauthors, 2002: MesoWest: Cooperative mesonets in the western United States. Bull. Amer. Meteor. Soc., 83, 211226, https://doi.org/10.1175/1520-0477(2002)083<0211:MCMITW>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Justice, C. O., and Coauthors, 1998: The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens., 36, 12281249, https://doi.org/10.1109/36.701075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kampf, S. K., S. W. Tyler, C. A. Ortiz, J. F. Muñoz, and P. L. Adkins, 2005: Evaporation and land surface energy budget at the Salar de Atacama, northern Chile. J. Hydrol., 310, 236252, https://doi.org/10.1016/j.jhydrol.2005.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. D., D. D. Herring, and D. J. Diner, 1995: The Earth Observing System: A space-based program for assessing mankind’s impact on the global environment. Opt. Photonics News, 6, 3439, https://doi.org/10.1364/OPN.6.1.000034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kletetschka, G., R. L. B. Hooke, A. Ryan, G. Fercana, E. McKinney, and K. P. Schwebler, 2013: Sliding stones of Racetrack Playa, Death Valley, USA: The roles of rock thermal conductivity and fluctuating water levels. Geomorphology, 195, 110117, https://doi.org/10.1016/j.geomorph.2013.04.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., M. Ma, X. Wu, and H. Yang, 2018: Snow cover and vegetation-induced decrease in global albedo from 2002 to 2016. J. Geophys. Res., 123, 124138, https://doi.org/10.1002/2017JD027010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., and Coauthors, 2009: Validation of Moderate Resolution Imaging Spectroradiometer (MODIS) albedo retrieval algorithm: Dependence of albedo on solar zenith angle. J. Geophys. Res., 114, D01106, https://doi.org/10.1029/2008JD009969.

    • Search Google Scholar
    • Export Citation
  • Malek, E., 2003: Microclimate of a desert playa: Evaluation of annual radiation, energy, and water budgets components. Int. J. Climatol., 23, 333345, https://doi.org/10.1002/joc.873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malek, E., and G. E. Bingham, 1990: Evapotranspiration from the margin and moist playa of a closed desert valley. J. Hydrol., 120, 1534, https://doi.org/10.1016/0022-1694(90)90139-O.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallia, D. V., A. Kochanski, D. Wu, C. Pennell, W. Oswald, and J. C. Lin, 2017: Wind-blown dust modeling using a backward-Lagrangian particle dispersion model. J. Appl. Meteor. Climatol., 56, 28452867, https://doi.org/10.1175/JAMC-D-16-0351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massey, J. D., W. J. Steenburgh, S. W. Hoch, and J. C. Knievel, 2014: Sensitivity of near-surface temperature forecasts to soil properties over a sparsely vegetated dryland region. J. Appl. Meteor. Climatol., 53, 19761995, https://doi.org/10.1175/JAMC-D-13-0362.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massey, J. D., W. J. Steenburgh, S. W. Hoch, and D. D. Jensen, 2017: Simulated and observed surface energy fluxes and resulting playa breezes during the MATERHORN field campaigns. J. Appl. Meteor. Climatol., 56, 915935, https://doi.org/10.1175/JAMC-D-16-0161.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFeeters, S. K., 1996: The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens., 17, 14251432, https://doi.org/10.1080/01431169608948714.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ming, J., Y. Wang, Z. Du, T. Zhang, W. Guo, C. Xiao, and W. Yang, 2015: Widespread albedo decreasing and induced melting of Himalayan snow and ice in the early 21st century. PLOS ONE, 10, e0126235, https://doi.org/10.1371/journal.pone.0126235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA LP DAAC, 2015a: MCD43A2: MODIS/Terra and Aqua BRDF/Albedo Quality Daily L3 Global 500 m SIN Grid V006. Accessed 1 August 2017, https://doi.org/10.5067/MODIS/MCD43A2.006.

    • Crossref
    • Export Citation
  • NASA LP DAAC, 2015b: MCD43A3: MODIS/Terra and Aqua Albedo Daily L3 Global 500 m SIN Grid V006. Accessed 1 August 2017, https://doi.org/10.5067/MODIS/MCD43A3.006.

    • Crossref
    • Export Citation
  • NASA LP DAAC, 2015c: MOD09A1: MODIS/Terra Surface Reflectance 8-Day L3 Global 500 m SIN Grid V006. Accessed 10 January 2018, https://doi.org/10.5067/MODIS/MOD09A1.006.

    • Crossref
    • Export Citation
  • Nicholson, S. E., 2011: Dryland Climatology. 1st ed. Cambridge University Press, 172 pp.

    • Crossref
    • Export Citation
  • Nield, J. M., R. G. Bryant, G. F. S. Wiggs, J. King, D. S. G. Thomas, F. D. Eckardt, and R. Washington, 2015: The dynamism of salt crust patterns on playas. Geology, 43, 3134, https://doi.org/10.1130/G36175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nield, J. M., G. F. S. Wiggs, J. King, R. G. Bryant, F. D. Eckardt, D. S. G. Thomas, and R. Washington, 2016: Climate-surface–pore-water interactions on a salt crusted playa: Implications for crust pattern and surface roughness development measured using terrestrial laser scanning. Earth Surf. Processes Landforms, 41, 738753, https://doi.org/10.1002/esp.3860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, J. W., J. D. Massey, and T. H. Painter, 2012: Episodic dust events of Utah’s Wasatch Front and adjoining region. J. Appl. Meteor. Climatol., 51, 16541669, https://doi.org/10.1175/JAMC-D-12-07.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vermote, E. F., and A. Vermeulen, 1999: MODIS Algorithm Technical Background Document Atmospheric Correction Algorithm: Spectral Reflectances (MOD09). 107 pp.

  • Vermote, E. F., J. C. Roger, and J. P. Ray, 2015: MODIS Surface Reflectance User’s Guide. 35 pp., http://modis-sr.ltdri.org/guide/MOD09_UserGuide_v1.4.pdf.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1060 276 27
PDF Downloads 997 197 16