Seasonal Changes in Water and Energy Balances over the Appalachian Region and Beyond throughout the Twenty-First Century

Rodrigo Fernandez West Virginia University, Morgantown, West Virginia

Search for other papers by Rodrigo Fernandez in
Current site
Google Scholar
PubMed
Close
and
Nicolas Zegre West Virginia University, Morgantown, West Virginia

Search for other papers by Nicolas Zegre in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Appalachian Mountains serve as a water source for important population centers in the eastern and midwestern United States. Despite this, the effects of climate change on the hydroclimatology of the region have not been thoroughly assessed, and its effects for water resources remain uncertain. In this study, we analyze the effects of climate change in a holistic approach to consider differential changes between atmospheric water supply (precipitation) and atmospheric water demand (potential evapotranspiration). We analyze the absolute and relative changes in both variables, as well as their relation (aridity index) and future projected shifts in their seasonality. Our findings show that precipitation is projected to increase in the northeastern part of the region and decrease in the southwest with a transition zone in the central Appalachians. Potential evapotranspiration increases consistently throughout the twenty-first century at a higher rate than precipitation, increasing the aridity of the region except for some small localized pockets at high elevations. The seasonality of precipitation indicates different shifts across the region related to changes in the dominant synoptic drivers of the region and changes in the seasonal characteristics of the land surface. All changes are exacerbated in the most extreme future climate scenario, highlighting the importance of local to global policies toward a more sustainable water resources development. In addition, we perform a basin-scale assessment on 20 major rivers with headwaters within the “Appalachian Region.” Our basin-scale results enforce the gridded regional results and indicate that, as temperatures continue to increase, lowland areas will rely more heavily on higher-elevation forested headwater catchments for water supply.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rodrigo Fernandez, rodrigofernrey@gmail.com

Abstract

The Appalachian Mountains serve as a water source for important population centers in the eastern and midwestern United States. Despite this, the effects of climate change on the hydroclimatology of the region have not been thoroughly assessed, and its effects for water resources remain uncertain. In this study, we analyze the effects of climate change in a holistic approach to consider differential changes between atmospheric water supply (precipitation) and atmospheric water demand (potential evapotranspiration). We analyze the absolute and relative changes in both variables, as well as their relation (aridity index) and future projected shifts in their seasonality. Our findings show that precipitation is projected to increase in the northeastern part of the region and decrease in the southwest with a transition zone in the central Appalachians. Potential evapotranspiration increases consistently throughout the twenty-first century at a higher rate than precipitation, increasing the aridity of the region except for some small localized pockets at high elevations. The seasonality of precipitation indicates different shifts across the region related to changes in the dominant synoptic drivers of the region and changes in the seasonal characteristics of the land surface. All changes are exacerbated in the most extreme future climate scenario, highlighting the importance of local to global policies toward a more sustainable water resources development. In addition, we perform a basin-scale assessment on 20 major rivers with headwaters within the “Appalachian Region.” Our basin-scale results enforce the gridded regional results and indicate that, as temperatures continue to increase, lowland areas will rely more heavily on higher-elevation forested headwater catchments for water supply.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rodrigo Fernandez, rodrigofernrey@gmail.com
Save
  • Abatzoglou, J. T., 2013: Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol., 33, 121131, https://doi.org/10.1002/joc.3413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abatzoglou, J. T., and T. J. Brown, 2012: A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Climatol., 32, 772780, https://doi.org/10.1002/joc.2312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Acharya, N., A. Frei, J. Chen, L. DeCristofaro, and E. M. Owens, 2017: Evaluating stochastic precipitation generators for climate change impact studies of New York City’s primary water supply. J. Hydrometeor., 18, 879896, https://doi.org/10.1175/JHM-D-16-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp., http://www.fao.org/docrep/X0490E/X0490E00.htm.

  • Appalachian Regional Commission, 2009: The Appalachian Region. Appalachian Regional Commission, https://www.arc.gov/appalachian_region/theappalachianregion.asp.

  • Appalachian Regional Commission, 2015a: Relative high school completion rates in Appalachia, 2011–2015. Appalachian Regional Commission, https://www.arc.gov/research/MapsofAppalachia.asp?MAP_ID=134.

  • Appalachian Regional Commission, 2015b: Relative per capita income rates in Appalachia, 2015. Appalachian Regional Commission, https://www.arc.gov/research/MapsofAppalachia.asp?MAP_ID=130.

  • Appalachian Regional Commission, 2015c: Relative unemployment rates in Appalachia, 2015. Appalachian Regional Commission, https://www.arc.gov/research/MapsofAppalachia.asp?MAP_ID=24.

  • Arora, V. K., 2002: The use of the aridity index to assess climate change effect on annual runoff. J. Hydrol., 265, 164177, https://doi.org/10.1016/S0022-1694(02)00101-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atallah, E., L. F. Bosart, and A. R. Aiyyer, 2007: Precipitation distribution associated with landfalling tropical cyclones over the eastern United States. Mon. Wea. Rev., 135, 21852206, https://doi.org/10.1175/MWR3382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and R. J. Kuligowski, 1998: Orographic effects during a severe wintertime rainstorm in the Appalachian Mountains. Mon. Wea. Rev., 126, 26482672, https://doi.org/10.1175/1520-0493(1998)126<2648:OEDASW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basara, J. B., and J. I. Christian, 2017: Seasonal and interannual variability of land–atmosphere coupling across the southern Great Plains of North America using the North American regional reanalysis. Int. J. Climatol., 38, 964978, https://doi.org/10.1002/joc.5223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belmecheri, S., F. Babst, A. R. Hudson, J. Betancourt, and V. Trouet, 2017: Northern hemisphere jet stream position indices as diagnostic tools for climate and ecosystem dynamics. Earth Interact., 21, https://doi.org/10.1175/EI-D-16-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, P. E., 1997: Watershed functions. J. Amer. Water Resour. Assoc., 33, 111, https://doi.org/10.1111/j.1752-1688.1997.tb04077.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., V. Pagnotti, and B. Lettau, 1973: Climatological aspects of eastern United States back-door cold frontal passages. Mon. Wea. Rev., 101, 627635, https://doi.org/10.1175/1520-0493(1973)101<0627:CAOEUS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, R. P., P. W. Limpisathian, T. Gould, T. Mazurczyk, E. Sava, and W. J. Mitsch, 2018: Does the Ohio River flow all the way to New Orleans? J. Amer. Water Resour. Assoc., 54, 752756, https://doi.org/10.1111/1752-1688.12629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budyko, M., 1974: Climate and Life. Academic Press, 508 pp.

  • Burns, D. A., J. Klaus, and M. R. McHale, 2007: Recent climate trends and implications for water resources in the Catskill Mountain region, New York. J. Hydrol., 336, 155170, https://doi.org/10.1016/j.jhydrol.2006.12.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., S. K. Avery, M. Leinen, K. Lee, X. Lin, and M. Visbeck, 2015: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 46, https://doi.org/10.1038/nclimate2482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coopersmith, E. J., M. A. Yaeger, S. Ye, L. Cheng, and M. Sivapalan, 2012: Exploring the physical controls of regional patterns of flow duration curves. Part 3: A catchment classification system based on regime curve indicators. Hydrol. Earth Syst. Sci., 16, 44674482, https://doi.org/10.5194/hess-16-4467-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coopersmith, E. J., B. S. Minsker, and M. Sivapalan, 2014: Patterns of regional hydroclimatic shifts: An analysis of changing hydrologic regimes. Water Resour. Res., 50, 19601983, https://doi.org/10.1002/2012WR013320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosgrove, B. A., and Coauthors, 2003: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108, 8842, https://doi.org/10.1029/2002JD003118.

    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doll, P., F. Kaspar, and B. Lehner, 2003: A global hydrological model for deriving water availability indicators: Model tuning and validation. J. Hydrol., 270, 105134, https://doi.org/10.1016/S0022-1694(02)00283-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohue, R. J., M. L. Roderick, and T. R. McVicar, 2012: Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol., 436–437, 3550, https://doi.org/10.1016/j.jhydrol.2012.02.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doubler, D. L., J. A. Winkler, X. Bian, C. K. Walters, and S. Zhong, 2015: An NARR-derived climatology of southerly and northerly low-level jets over North America and coastal environs. J. Appl. Meteor. Climatol., 54, 15961619, https://doi.org/10.1175/JAMC-D-14-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, K., and Coauthors, 2017: Impact of air pollution induced climate change on water availability and ecosystem productivity in the conterminous united states. Climatic Change, 140, 259272, https://doi.org/10.1007/s10584-016-1850-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernandez, R., and T. Sayama, 2015: Comparison of future runoff projections using Budyko framework and global hydrologic model: conceptual simplicity vs process complexity. Hydrol. Res. Lett., 9, 7583, https://doi.org/10.3178/hrl.9.75.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid arctic warming. Environ. Res. Lett., 10, 014005, https://doi.org/10.1088/1748-9326/10/1/014005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frumhoff, P. C., J. J. McCarthy, J. M. Melillo, S. C. Moser, and D. J. Wuebbles, 2007: Confronting climate change in the U.S. Northeast: Science, impacts, and solutions. Union of Concerned Scientists Northeast Climate Impacts Assessment Rep., 160 pp., https://www.ucsusa.org/global_warming/science_and_impacts/impacts/northeast-climate-impacts.html.

  • Fu, Q., and S. Feng, 2014: Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos., 119, 78637875, https://doi.org/10.1002/2014JD021608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., P. Greve, and S. I. Seneviratne, 2016: The sensitivity of water availability to changes in the aridity index and other factors—A probabilistic analysis in the Budyko space. Geophys. Res. Lett., 43, 69856994, https://doi.org/10.1002/2016GL069763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, D., S. Westra, and H. R. Maier, 2017: Sensitivity of potential evapotranspiration to changes in climate variables for different Australian climatic zones. Hydrol. Earth Syst. Sci., 21, 21072126, https://doi.org/10.5194/hess-21-2107-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haddeland, I., and Coauthors, 2014: Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA, 111, 32513256, https://doi.org/10.1073/pnas.1222475110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanasaki, N., S. Kanae, T. Oki, K. Masuda, K. Motoya, N. Shirakawa, Y. Shen, and K. Tanaka, 2008: An integrated model for the assessment of global water resources—Part 1: Model description and input meteorological forcing. Hydrol. Earth Syst. Sci., 12, 10071025, https://doi.org/10.5194/hess-12-1007-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayhoe, K., and Coauthors, 2007: Past and future changes in climate and hydrological indicators in the US Northeast. Climate Dyn., 28, 381407, https://doi.org/10.1007/s00382-006-0187-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayhoe, K., and Coauthors, 2008: Regional climate change projections for the northeast USA. Mitig. Adapt. Strategies Global Change, 13, 425436, https://doi.org/10.1007/s11027-007-9133-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, https://doi.org/10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G., and C. L. Bruyère, 2014: Recent intense hurricane response to global climate change. Climate Dyn., 42, 617627, https://doi.org/10.1007/s00382-013-1713-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., A. D. Richardson, K. J. McGuire, and K. Hayhoe, 2009: Climate and hydrological changes in the northeastern United States: Recent trends and implications for forested and aquatic ecosystems. Can. J. For. Res., 39, 199212, https://doi.org/10.1139/X08-116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kam, J., J. Sheffield, X. Yuan, and E. F. Wood, 2013: The influence of Atlantic tropical cyclones on drought over the eastern United States (1980–2007). J. Climate, 26, 30673086, https://doi.org/10.1175/JCLI-D-12-00244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, H., and V. Sridhar, 2018: Assessment of future drought conditions in the Chesapeake Bay watershed. J. Amer. Water Resour. Assoc., 54, 160183, https://doi.org/10.1111/1752-1688.12600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutta, E., and J. A. Hubbart, 2016: Reconsidering meteorological seasons in a changing climate. Climatic Change, 137, 511524, https://doi.org/10.1007/s10584-016-1704-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leathers, D. J., and M. A. Palecki, 1992: The Pacific/North American teleconnection pattern and United States climate. Part II: Temporal characteristics and index specification. J. Climate, 5, 707716, https://doi.org/10.1175/1520-0442(1992)005<0707:TPATPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leathers, D. J., B. Yarnal, and M. A. Palecki, 1991: The Pacific/North American teleconnection pattern and United States climate. Part I: Regional temperature and precipitation associations. J. Climate, 4, 517528, https://doi.org/10.1175/1520-0442(1991)004<0517:TPATPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and Coauthors, 2017: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn., 49, 7195, https://doi.org/10.1007/s00382-016-3327-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahat, V., J. A. Ramírez, and T. C. Brown, 2017: Twenty-first-century climate in CMIP5 simulations: Implications for snow and water yield across the contiguous United States. J. Hydrometeor., 18, 20792099, https://doi.org/10.1175/JHM-D-16-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marston, R. A., and B. K. Marston, 2016: Mountain hydrology. International Encyclopedia of Geography: People, the Earth, Environment and Technology, D. Richardson et al., Eds., John Wiley and Sons, https://doi.org/10.1002/9781118786352.wbieg1137.

    • Crossref
    • Export Citation
  • Milly, P. C. D., 1994: Climate, soil water storage, and the average annual water balance. Water Resour. Res., 30, 21432156, https://doi.org/10.1029/94WR00586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and K. A. Dunne, 2016: Potential evapotranspiration and continental drying. Nat. Climate Change, 6, 946, https://doi.org/10.1038/nclimate3046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Missimer, T. M., P. A. Danser, G. Amy, and T. Pankratz, 2014: Water crisis: The metropolitan Atlanta, Georgia, regional water supply conflict. Water Policy, 16, 669689, https://doi.org/10.2166/wp.2014.131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naz, B. S., S.-C. Kao, M. Ashfaq, H. Gao, D. Rastogi, and S. Gangrade, 2018: Effects of climate change on streamflow extremes and implications for reservoir inflow in the United States. J. Hydrol., 556, 359370, https://doi.org/10.1016/j.jhydrol.2017.11.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ning, L., and R. S. Bradley, 2016: NAO and PNA influences on winter temperature and precipitation over the eastern United States in CMIP5 GCMs. Climate Dyn., 46, 12571276, https://doi.org/10.1007/s00382-015-2643-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niziol, T. A., W. R. Snyder, and J. S. Waldstreicher, 1995: Winter weather forecasting throughout the eastern United States. Part IV: Lake effect snow. Wea. Forecasting, 10, 6177, https://doi.org/10.1175/1520-0434(1995)010<0061:WWFTTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., V. Bennington, and S. Vavrus, 2015: Dynamically downscaled projections of lake-effect snow in the Great Lakes basin. J. Climate, 28, 16611684, https://doi.org/10.1175/JCLI-D-14-00467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2015: Precipitation extremes under climate change. Curr. Climate Change Rep., 1, 4959, https://doi.org/10.1007/s40641-015-0009-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Jr., and C. N. Landsea, 1999: La Niña, El Niño, and Atlantic hurricane damages in the United States. Bull. Amer. Meteor. Soc., 80, 20272033, https://doi.org/10.1175/1520-0477(1999)080<2027:LNAENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pires, M., 2004: Watershed protection for a world city: The case of New York. Land Use Policy, 21, 161175, https://doi.org/10.1016/j.landusepol.2003.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pourmokhtarian, A., and Coauthors, 2017: Modeled ecohydrological responses to climate change at seven small watersheds in the northeastern United States. Global Change Biol., 23, 840856, https://doi.org/10.1111/gcb.13444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reyes-Fox, M., H. Steltzer, M. J. Trlica, G. S. McMaster, A. A. Andales, D. R. LeCain, and J. A. Morgan, 2014: Elevated CO2 further lengthens growing season under warming conditions. Nature, 510, 259, https://doi.org/10.1038/nature13207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., and G. D. Farquhar, 2011: A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour. Res., 47, W00G07, https://doi.org/10.1029/2010WR009826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roller, C. D., J.-H. Qian, L. Agel, M. Barlow, and V. Moron, 2016: Winter weather regimes in the northeast United States. J. Climate, 29, 29632980, https://doi.org/10.1175/JCLI-D-15-0274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sagarika, S., A. Kalra, and S. Ahmad, 2014: Evaluating the effect of persistence on long-term trends and analyzing step changes in streamflows of the continental United States. J. Hydrol., 517, 3653, https://doi.org/10.1016/j.jhydrol.2014.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sagarika, S., A. Kalra, and S. Ahmad, 2015: Interconnections between oceanic–atmospheric indices and variability in the U.S. streamflow. J. Hydrol., 525, 724736, https://doi.org/10.1016/j.jhydrol.2015.04.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sayemuzzaman, M., and M. K. Jha, 2014: Seasonal and annual precipitation time series trend analysis in North Carolina, United States. Atmos. Res., 137, 183194, https://doi.org/10.1016/j.atmosres.2013.10.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schewe, J., and Coauthors, 2014: Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA, 111, 32453250, https://doi.org/10.1073/pnas.1222460110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, https://doi.org/10.1038/ngeo.2007.38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinman, B. A., M. E. Mann, and S. K. Miller, 2015: Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 347, 988991, https://doi.org/10.1126/science.1257856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Touma, D., M. Ashfaq, M. A. Nayak, S.-C. Kao, and N. S. Diffenbaugh, 2015: A multi-model and multi-index evaluation of drought characteristics in the 21st century. J. Hydrol., 526, 196207, https://doi.org/10.1016/j.jhydrol.2014.12.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 5, https://doi.org/10.1007/s10584-011-0148-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viviroli, D., H. H. Dürr, B. Messerli, M. Meybeck, and R. Weingartner, 2007: Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res., 43, W07447, https://doi.org/10.1029/2006WR005653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., P. Green, J. Salisbury, and R. B. Lammers, 2000: Global water resources: Vulnerability from climate change and population growth. Science, 289, 284288, https://doi.org/10.1126/science.289.5477.284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, K. J., and Coauthors, 2016: Tropical cyclones and climate change. Wiley Interdiscip. Rev.: Climate Change, 7, 6589, https://doi.org/10.1002/wcc.371.

    • Search Google Scholar
    • Export Citation
  • Walsh, R. P. D., and D. M. Lawler, 1981: Rainfall seasonality: Description, spatial patterns and change through time. Weather, 36, 201208, https://doi.org/10.1002/j.1477-8696.1981.tb05400.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., and M. Hejazi, 2011: Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res., 47, W00J12, https://doi.org/10.1029/2010WR010283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, M., and L. Menzel, 2008: A global comparison of four potential evapotranspiration equations and their relevance to stream flow modelling in semi-arid environments. Adv. Geosci., 18, 1523, https://doi.org/10.5194/adgeo-18-15-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam, 2006: Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940943, https://doi.org/10.1126/science.1128834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wise, E. K., M. L. Wrzesien, M. P. Dannenberg, and D. L. McGinnis, 2015: Cool-season precipitation patterns associated with teleconnection interactions in the United States. J. Appl. Meteor. Climatol., 54, 494505, https://doi.org/10.1175/JAMC-D-14-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wobus, C., and Coauthors, 2017: Projected climate change impacts on skiing and snowmobiling: A case study of the United States. Global Environ. Change, 45, 114, https://doi.org/10.1016/j.gloenvcha.2017.04.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., E. P. Maurer, A. Kumar, and D. P. Lettenmaier, 2002: Long-range experimental hydrologic forecasting for the eastern united states. J. Geophys. Res., 107, 4429, https://doi.org/10.1029/2001JD000659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, R. A., 2009: Analytical model of seasonal climate impacts on snow hydrology: Continuous snowpacks. Adv. Water Resour., 32, 14651481, https://doi.org/10.1016/j.advwatres.2009.06.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wuebbles, D., and Coauthors, 2014: CMIP5 climate model analyses: Climate extremes in the United States. Bull. Amer. Meteor. Soc., 95, 571583, https://doi.org/10.1175/BAMS-D-12-00172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y.-P., S. Pan, G. Fu, Y. Tian, and X. Zhang, 2014: Future potential evapotranspiration changes and contribution analysis in Zhejiang Province, East China. J. Geophys. Res. Atmos., 118, 21742192, https://doi.org/10.1002/2013JD021245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, K., J. S. Kimball, R. R. Nemani, S. W. Running, Y. Hong, J. J. Gourley, and Z. Yu, 2015: Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep., 5, 15 956, https://doi.org/10.1038/srep15956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. L. Delworth, 2016: Simulated response of the Pacific decadal oscillation to climate change. J. Climate, 29, 59996018, https://doi.org/10.1175/JCLI-D-15-0690.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., and A. Dai, 2015: The magnitude and causes of global drought changes in the twenty-first century under a low–moderate emissions scenario. J. Climate, 28, 44904512, https://doi.org/10.1175/JCLI-D-14-00363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., and A. Dai, 2017: Uncertainties in historical changes and future projections of drought. Part II: Model-simulated historical and future drought changes. Climatic Change, 144, 535548, https://doi.org/10.1007/s10584-016-1742-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zielinski, G. A., 2002: A classification scheme for winter storms in the eastern and central United States with an emphasis on nor’easters. Bull. Amer. Meteor. Soc., 83, 3751, https://doi.org/10.1175/1520-0477(2002)083<0037:ACSFWS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3881 1800 172
PDF Downloads 1105 208 4