Impacts of High-Resolution Urban Canopy Parameters within the WRF Model on Dynamical and Thermal Fields over Guangzhou, China

Chong Shen School of Atmospheric Sciences/Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China

Search for other papers by Chong Shen in
Current site
Google Scholar
PubMed
Close
,
Xiaoyang Chen School of Atmospheric Sciences/Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China

Search for other papers by Xiaoyang Chen in
Current site
Google Scholar
PubMed
Close
,
Wei Dai School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China

Search for other papers by Wei Dai in
Current site
Google Scholar
PubMed
Close
,
Xiaohui Li Guangzhou Urban Planning Design and Survey Research Institute, Guangzhou, China

Search for other papers by Xiaohui Li in
Current site
Google Scholar
PubMed
Close
,
Jie Wu Guangzhou Urban Planning Design and Survey Research Institute, Guangzhou, China

Search for other papers by Jie Wu in
Current site
Google Scholar
PubMed
Close
,
Qi Fan School of Atmospheric Sciences/Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China

Search for other papers by Qi Fan in
Current site
Google Scholar
PubMed
Close
,
Xuemei Wang Institute for Environmental and Climate Research, Jinan University, Guangzhou, China

Search for other papers by Xuemei Wang in
Current site
Google Scholar
PubMed
Close
,
Liye Zhu School of Atmospheric Sciences/Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China

Search for other papers by Liye Zhu in
Current site
Google Scholar
PubMed
Close
,
Pakwai Chan Hong Kong Observatory, Hong Kong, China

Search for other papers by Pakwai Chan in
Current site
Google Scholar
PubMed
Close
,
Jian Hang School of Atmospheric Sciences/Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China

Search for other papers by Jian Hang in
Current site
Google Scholar
PubMed
Close
,
Shaojia Fan School of Atmospheric Sciences/Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China

Search for other papers by Shaojia Fan in
Current site
Google Scholar
PubMed
Close
, and
Weibiao Li School of Atmospheric Sciences/Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China

Search for other papers by Weibiao Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

On urban scales, the detailed characteristics of land-use information and building properties are vital to improving the meteorological model. The WRF Model with high-spatial-resolution urban fraction (UF) and urban morphology (UM) is used to study the impacts of these urban canopy parameters (UCPs) on dynamical and thermal meteorological fields in two representative seasons in Guangzhou. The results of two seasons are similar and as follows. 1) The impacts of updated UF and UM are obvious on wind speed but minor on temperature and humidity. In the urban environment, the results with updated UF and UM are more consistent with observations compared with the default UCPs, which means the performance of the model has been improved. 2) The dynamical factors associated with wind speed are analyzed. Turbulent kinetic energy (TKE) is significantly affected by UM but little by UF. And both UF and UM are found to influence friction velocity U*. The UM and greater UF attained larger U*. 3) In addition, the thermal fields are analyzed. The UM and increased UF induce higher surface skin temperature (TSK) and ground heat flux in the daytime, indicating that more heat is transported from the surface to the soil. At night, more heat is transported from the soil to the surface, producing higher TSK. For sensible heat flux (HFX), greater UF induces larger HFX during the daytime. But the effects of UM are complex, which makes HFX decrease during the daytime and increase at night. Finally, larger UF attains lower latent heat in the daytime.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qi Fan, eesfq@mail.sysu.edu.cn

Abstract

On urban scales, the detailed characteristics of land-use information and building properties are vital to improving the meteorological model. The WRF Model with high-spatial-resolution urban fraction (UF) and urban morphology (UM) is used to study the impacts of these urban canopy parameters (UCPs) on dynamical and thermal meteorological fields in two representative seasons in Guangzhou. The results of two seasons are similar and as follows. 1) The impacts of updated UF and UM are obvious on wind speed but minor on temperature and humidity. In the urban environment, the results with updated UF and UM are more consistent with observations compared with the default UCPs, which means the performance of the model has been improved. 2) The dynamical factors associated with wind speed are analyzed. Turbulent kinetic energy (TKE) is significantly affected by UM but little by UF. And both UF and UM are found to influence friction velocity U*. The UM and greater UF attained larger U*. 3) In addition, the thermal fields are analyzed. The UM and increased UF induce higher surface skin temperature (TSK) and ground heat flux in the daytime, indicating that more heat is transported from the surface to the soil. At night, more heat is transported from the soil to the surface, producing higher TSK. For sensible heat flux (HFX), greater UF induces larger HFX during the daytime. But the effects of UM are complex, which makes HFX decrease during the daytime and increase at night. Finally, larger UF attains lower latent heat in the daytime.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qi Fan, eesfq@mail.sysu.edu.cn
Save
  • Adachi, S. A., F. Kimura, H. Kusaka, M. G. Duda, Y. Yamagata, H. Seya, K. Nakamichi, and T. Aoyagi, 2014: Moderation of summertime heat island phenomena via modification of the urban form in the Tokyo Metropolitan Area. J. Appl. Meteor. Climatol., 53, 18861900, https://doi.org/10.1175/JAMC-D-13-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burian, S. J., A. McKinnon, J. Hartman, and W. S. Han, 2005: Urban Morphological Analysis Processor User Manual version 2.0. Department of Civil and Environmental Engineering, University of Utah, 34 pp.

  • Chang, M., S. Fan, and X. Wang, 2014: Impact of refined land-cover data on WRF performance over the Pearl River Delta region, China (in Chinese). Acta Sci. Circumstantiae, 34, 19221933.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2011b: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273288, https://doi.org/10.1002/joc.2158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., S. Miao, M. Tewari, J.-W. Bao, and H. Kusaka, 2011a: A numerical study of interactions between surface forcing and sea-breeze circulations and their effects on stagnant winds in the greater Houston area. J. Geophys. Res., 116, D12105, https://doi.org/10.1029/2010JD015533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., X. Yang, and J. Wu, 2016: Simulation of the urban climate in a Chinese megacity with spatially heterogeneous anthropogenic heat data. J. Geophys. Res. Atmos., 121, 51935212, https://doi.org/10.1002/2015JD024642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and W. Jiang, 2006: The numerical experiments of the effect of urban buildings on boundary layer structure (in Chinese). Plateau Meteor., 25, 824833.

    • Search Google Scholar
    • Export Citation
  • Ching, J., and Coauthors, 2009: National Urban Database and Access Portal Tool. Bull. Amer. Meteor. Soc., 90, 11571168, https://doi.org/10.1175/2009BAMS2675.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ching, J., and Coauthors, 2014: WUDAPT: Facilitating advanced urban canopy modeling for weather climate and air quality applications. 11th Symp. on the Urban Environment, Atlanta, GA, Amer. Meteor. Soc., J1.3, https://ams.confex.com/ams/94Annual/webprogram/Manuscript/Paper236443/ExtAbs.WUDAPT.pdf.

  • Ching, J., and Coauthors, 2018: WUDAPT: An urban weather, climate, and environmental modeling infrastructure for the Anthropocene. Bull. Amer. Meteor. Soc., 99, 19071924, https://doi.org/10.1175/BAMS-D-16-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de la Paz, D., R. Borge, and A. Martilli, 2016: Assessment of a high resolution annual WRF-BEP/CMAQ simulation for the urban area of Madrid (Spain). Atmos. Environ., 144, 282296, https://doi.org/10.1016/j.atmosenv.2016.08.082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fallmann, J., R. Forkel, and S. Emeis, 2016: Secondary effects of urban heat island mitigation measures on air quality. Atmos. Environ., 125, 199211, https://doi.org/10.1016/j.atmosenv.2015.10.094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feddema, J. J., K. W. Oleson, G. B. Bonna, L. O. Mearns, L. E. Buja, G. A. Meehl, and W. M. Washington, 2005: The importance of land-cover change in simulating future climates. Science, 310, 16741678, https://doi.org/10.1126/science.1118160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Y., and H. Feng, 2012: TM data retrieval and analysis of Beijing area surface albedo (in Chinese). Sci. Surv. Mapp., 37, 166168.

    • Search Google Scholar
    • Export Citation
  • Glotfelty, T., M. Tewari, K. Sampson, M. Duda, F. Chen, and J. Ching, 2013: NUDAPT 44 Documentation. NCAR Research Applications Laboratory Doc., 9 pp., https://ral.ucar.edu/sites/default/files/public/product-tool/NUDAPT_44_Documentation.pdf.

  • Guangzhou Municipal Peoples Government, 2016: The ecological civilization construction in Guangzhou (2016-2020). Accessed 10 August 2016, http://www.gz.gov.cn/gzgov/s2811/201608/1c0082b3d2224dd5aa7eb7d0cd32fd2e.shtml.

  • Guarino, M. V., A. Martilli, S. D. Sabatino, and L. S. Leo, 2014: Modelling the urban boundary-layer over a typical Mediterranean city using WRF: Assessment of UHI and thermal comfort. Proc. Fourth Joint US–European Fluids Engineering Division Summer Meeting/12th Int. Conf. on Nanochannels, Microchannels, and Minichannels, Chicago, IL, ASME, V01DT28A006, https://doi.org/10.1115/FEDSM2014-21572.

    • Crossref
    • Export Citation
  • He, X., Y. Li, X. Wang, L. Chen, B. Yu, Y. Zhang, and S. Miao, 2019: High-resolution dataset of urban canopy parameters for Beijing and its application to the integrated WRF/Urban modelling system. J. Cleaner Prod., 208, 373383, https://doi.org/10.1016/j.jclepro.2018.10.086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jian, M., 1994: The division of seasons for the south China region (in Chinese). Acta Sci. Nat. Univ. Sunyatseni, 33, 131133.

  • Jiang, L., L. Yu, Y. Qin, and Z. Wang, 2016: Effect of urban canopy scheme on the weather simulation research in Beijing area (in Chinese). J. Civ. Aviat. Flight Univ. China, 27, 2026.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., and F. Kimura, 2004: Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteor. Soc. Japan, 82, 6780, https://doi.org/10.2151/jmsj.82.67.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., K. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358, https://doi.org/10.1023/A:1019207923078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-H., and Coauthors, 2011: Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign. Atmos. Chem. Phys., 11, 21272143, https://doi.org/10.5194/acp-11-2127-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., E. Bou-Zeid, M. Barlage, F. Chen, and J. A. Smith, 2013: Development and evaluation of a mosaic approach in the WRF-Noah framework. J. Geophys. Res. Atmos., 118, 11 918–11 935, https://doi.org/10.1002/2013JD020657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, J., T. Wang, X. Wang, M. Xie, Z. Jiang, X. Huang, and J. Zhu, 2014: Impacts of different urban canopy schemes in WRF/Chem on regional climate and air quality in the Yangtze River Delta, China. Atmos. Res., 145–146, 226243, https://doi.org/10.1016/j.atmosres.2014.04.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, W., L. Zhang, D. Du, and L. Yang, 2009: Quantification of land use/land cover changes in Pearl River Delta and its impact on regional climate in summer using numerical modeling. Reg. Environ. Change, 9, 7582, https://doi.org/10.1007/s10113-008-0057-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., F. Chen, T. Warner, and J. Basara, 2006: Verification of a mesoscale data-assimilation and forecasting system for the Oklahoma City area during the Joint Urban 2003 Field Project. J. Appl. Meteor., 45, 912929, https://doi.org/10.1175/JAM2383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lokoshchenko, M. A., 2017: Urban heat island and urban dry island in Moscow and their centennial changes. J. Appl. Meteor. Climatol., 56, 27292745, https://doi.org/10.1175/JAMC-D-16-0383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loridan, T., and C. S. B. Grimmond, 2012: Characterization of energy flux partitioning in urban environments: Links with surface seasonal properties. J. Appl. Meteor. Climatol., 51, 219238, https://doi.org/10.1175/JAMC-D-11-038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loridan, T., F. Lindberg, O. Jorba, S. Kotthaus, C. S. Grossman, and C. S. B. Grimmond, 2013: High resolution simulation of the variability of surface energy balance fluxes across central London with urban zones for energy partitioning. Bound.-Layer Meteor., 147, 493523, https://doi.org/10.1007/s10546-013-9797-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and M. Ek, 1984: The influence of atmospheric stability on potential evaporation. J. Climate Appl. Meteor., 23, 222234, https://doi.org/10.1175/1520-0450(1984)023<0222:TIOASO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterization for mesoscale models. Bound.-Layer Meteor., 104, 261304, https://doi.org/10.1023/A:1016099921195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martilli, A., Y. A. Roulet, M. Junier, F. Kirchner, M. W. Rotach, and A. Clappier, 2003: On the impact of urban surface exchange parameterisations on air quality simulations: the Athens case. Atmos. Environ., 37, 42174231, https://doi.org/10.1016/S1352-2310(03)00564-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, S., F. Chen, M. A. LeMone, M. Tewari, Q. Li, and Y. Wang, 2009a: An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J. Appl. Meteor. Climatol., 48, 484501, https://doi.org/10.1175/2008JAMC1909.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, S., F. Chen, Q. Li, and S. Fan, 2009b: Impacts of urbanization on a summer heavy rainfall in Beijing. Seventh Int. Conf. on Urban Climate, Yokohama, Japan, ICUC, http://www.ide.titech.ac.jp/~icuc7/extended_abstracts/pdf/293667-1-090515123700-002.pdf.

  • Mohan, M., and A. Kandya, 2015: Impact of urbanization and land-use/land-cover change on diurnal temperature range: A case study of tropical urban airshed of India using remote sensing data. Sci. Total Environ., 506, 453465, https://doi.org/10.1016/j.scitotenv.2014.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powers, J. G., and Coauthors, 2017: The Weather Research and Forecasting Model: Overview, system efforts, and future directions. Bull. Amer. Meteor. Soc., 98, 17171737, https://doi.org/10.1175/BAMS-D-15-00308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamanca, F., and A. Martilli, 2010: A new Building Energy Model coupled with an Urban Canopy Parameterization for urban climate simulations—Part II. Validation with one dimension off-line simulations. Theor. Appl. Climatol., 99, 345356, https://doi.org/10.1007/s00704-009-0143-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamanca, F., A. Martilli, M. Tewari, and F. Chen, 2011: A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF. J. Appl. Meteor. Climatol., 50, 11071128, https://doi.org/10.1175/2010JAMC2538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J., P. Liang, Q. Wan, J. He, W. Zhou, and L. Cui, 2011: A review of the progress of research on urban climate (in Chinese). J. Trop. Meteor., 27, 942951.

    • Search Google Scholar
    • Export Citation
  • Shrestha, K. L., A. Kondo, C. Maeda, A. Kaga, and Y. Inoue, 2011: Investigating the contribution of urban canopy model and anthropogenic heat emission to urban heat island effect using WRF Model. Trans. Japan Soc. Refrig. Air Cond. Eng., 26, 4555.

    • Search Google Scholar
    • Export Citation
  • Shui, T., J. Liu, P. Zhang, S. Liu, and Z. Zhao, 2016: Development of an urban canopy model for the evaluation of urban thermal climate with snow cover in severe cold regions. Build. Environ., 95, 160170, https://doi.org/10.1016/j.buildenv.2015.09.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1990: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • United Nations, 2015: World urbanization prospects: The 2014 revision. UN, 32 pp., https://esa.un.org/unpd/wup/Publications/Files/WUP2014-Highlights.pdf.

  • Varquez, A. C. G., M. Nakayoshi, and M. Kanda, 2015: The effects of highly detailed urban roughness parameters on a sea-breeze numerical simulation. Bound.-Layer Meteor., 154, 449469, https://doi.org/10.1007/s10546-014-9985-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and Y. Gong, 2010: The impact of an urban dry island on the summer heat wave and sultry weather in Beijing City (in Chinese). Chin. Sci. Bull., 55, 16571661, https://doi.org/10.1007/s11434-010-3088-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., W. Lin, L. Yang, R. Deng, and H. Lin, 2007: A numerical study of influences of urban land-use change on ozone distribution over Pearl River Delta region, China. Tellus, 59B, 633641, https://doi.org/10.1111/j.1600-0889.2007.00271.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., F. Chen, Z. Wu, M. Zhang, M. Tewari, A. Guenther, and C. Wiedinmyer, 2009a: Impacts of weather conditions modified by urban expansion on surface ozone over the Pearl River Delta and Yangtze River Delta regions, China. Adv. Atmos. Sci., 26, 962972, https://doi.org/10.1007/s00376-009-8001-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., Z. Wu, and G. Liang, 2009b: WRF/CHEM modeling of impacts of weather conditions modified by urban expansion on secondary organic aerosol formation over Pearl River Delta. Particuology, 7, 384391, https://doi.org/10.1016/j.partic.2009.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., J. Liao, J. Zhang, C. Shen, W. Chen, B. Xia, and T. Wang, 2014: A numerical study of regional climate change induced by urban expansion in the Pearl River Delta. J. Appl. Meteor. Climatol., 53, 346362, https://doi.org/10.1175/JAMC-D-13-054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., J. Wu, Q. Du, and Y. Gao, 2013: Numerical study of the Chongqing high-density buildings environment by the WRF with the different urban canopy (in Chinese). Acta Meteor. Sin., 71, 11301145.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., E. Bou-Zeid, and J. A. Smith, 2013: A coupled energy transport and hydrological model for urban canopies evaluated using a wireless sensor network. Quart. J. Roy. Meteor. Soc., 139, 16431657, https://doi.org/10.1002/qj.2032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, B., J. C. H. Fung, A. Chan, and A. Lau, 2012: Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model. J. Geophys. Res., 117, D12103. https://doi.org/1029/2011JD017080.

    • Search Google Scholar
    • Export Citation
  • Xie, M., J. Liao, T. Wang, K. Zhu, B. Zhuang, Y. Han, M. Liang, and S. Li, 2016: Modeling of the anthropogenic heat flux and its effect on regional, meteorology and air quality over the Yangtze River Delta region, China. Atmos. Chem. Phys., 16, 60716089, https://doi.org/10.5194/acp-16-6071-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Z. Wang, F. Chen, S. Miao, M. Tewari, J. Voogt, and S. Myint, 2015: Enhancing hydrologic modeling in the coupled Weather Research and Forecasting–urban modeling system. Bound.-Layer Meteor., 155, 87109, https://doi.org/10.1007/s10546-014-9991-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., and D. P. Roy, 2017: Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote Sens. Environ., 197, 1534, https://doi.org/10.1016/j.rse.2017.05.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, N., Z. Gao, X. Wang, and Y. Chen, 2010: Modeling the impact of urbanization on the local and regional climate in Yangtze River Delta, China. Theor. Appl. Climatol., 102, 331342, https://doi.org/10.1007/s00704-010-0263-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, N., X. Wang, Y. Chen, W. Dai, and X. Wang, 2016: Numerical simulations on influence of urban land cover expansion and anthropogenic heat release on urban meteorological environment in Pearl River Delta. Theor. Appl. Climatol., 126, 469479, https://doi.org/10.1007/s00704-015-1601-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., L. Zheng, S. Zheng, Y. Zou, W. Lv, and Y. Huang, 2010: Study on the dry island effect in Xiamen city (in Chinese). J. Anhui Agric. Sci., 38, 11 32911 332.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., S. Jin, J. Sun, and Y. Zhang, 2002: Primary research on the relationship between building energy consumption and heat island formation (in Chinese). J. Hebei Inst. Archit. Sci. Technol., 19, 1517.

    • Search Google Scholar
    • Export Citation
  • Zhou, R., W. Jiang, X. He, and G. Liu, 2008: Study on effects of buildings morphology on urban boundary layer using an urban canopy model (in Chinese). Acta Meteor. Sin., 66, 489499.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., and H. Chen, 2018: Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon. Sci. Total Environ., 635, 14671476, https://doi.org/10.1016/j.scitotenv.2018.04.091.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1478 376 36
PDF Downloads 1963 430 28