Synoptic and Large-Scale Determinants of Extreme Austral Frost Events

James S. Risbey CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

Search for other papers by James S. Risbey in
Current site
Google Scholar
PubMed
Close
,
Didier P. Monselesan CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

Search for other papers by Didier P. Monselesan in
Current site
Google Scholar
PubMed
Close
,
Terence J. O’Kane CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

Search for other papers by Terence J. O’Kane in
Current site
Google Scholar
PubMed
Close
,
Carly R. Tozer CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

Search for other papers by Carly R. Tozer in
Current site
Google Scholar
PubMed
Close
,
Michael J. Pook CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

Search for other papers by Michael J. Pook in
Current site
Google Scholar
PubMed
Close
, and
Peter T. Hayman South Australian Research and Development Institute, Urrbrae, South Australia, Australia

Search for other papers by Peter T. Hayman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We define and examine extreme frost events at three station locations across southern Australia. A synoptic assessment of the events shows that they are generally characterized by passage of a front or trough followed by a developing blocking high. Frost typically occurs at the leading edge of the block. The very cold air pool leading to the frost event is the result of descent of cold, dry midtropospheric air parcels from regions poleward of the station. The air is exceptionally cold because it is advected across the strong meridional temperature gradients in the storm track. The air is dry because this equatorward meridional pathway requires descent and so must have origins well above the surface in the dryer midtroposphere. The position of the block and location of the dry descent are dynamically determined by large-scale waveguide modes in the polar jet waveguide. The role of the waveguide modes is deduced from composites of midtropospheric flow anomalies over the days preceding and after the frost events. These show organized wavenumber 3 or 4 wave trains, with the block associated with the frost formed as a node of the wave train. The wave trains resemble known waveguide modes such as the Pacific–South America mode, and the frost event projects clearly onto these modes during their life cycle. The strong interannual and decadal variability of extreme frost events at a location can be understood in light of event dependence on organized waveguide modes.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: James S. Risbey, james.risbey@csiro.au

Abstract

We define and examine extreme frost events at three station locations across southern Australia. A synoptic assessment of the events shows that they are generally characterized by passage of a front or trough followed by a developing blocking high. Frost typically occurs at the leading edge of the block. The very cold air pool leading to the frost event is the result of descent of cold, dry midtropospheric air parcels from regions poleward of the station. The air is exceptionally cold because it is advected across the strong meridional temperature gradients in the storm track. The air is dry because this equatorward meridional pathway requires descent and so must have origins well above the surface in the dryer midtroposphere. The position of the block and location of the dry descent are dynamically determined by large-scale waveguide modes in the polar jet waveguide. The role of the waveguide modes is deduced from composites of midtropospheric flow anomalies over the days preceding and after the frost events. These show organized wavenumber 3 or 4 wave trains, with the block associated with the frost formed as a node of the wave train. The wave trains resemble known waveguide modes such as the Pacific–South America mode, and the frost event projects clearly onto these modes during their life cycle. The strong interannual and decadal variability of extreme frost events at a location can be understood in light of event dependence on organized waveguide modes.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: James S. Risbey, james.risbey@csiro.au
Save
  • Ambrizzi, T., B. Hoskins, and H. Hsu, 1995: Rossby wave propagation and teleconnection patterns in the Austral winter. J. Atmos. Sci., 52, 36613672, https://doi.org/10.1175/1520-0469(1995)052<3661:RWPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashcroft, L., A. Pezza, and I. Simmonds, 2009: Cold events over southern Australia: Synoptic climatology and hemispheric structure. J. Climate, 22, 66796698, https://doi.org/10.1175/2009JCLI2997.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avissar, R., and Y. Mahrer, 1988: Mapping frost-sensitive areas with a three-dimensional local-scale numerical model. Part I. Physical and numerical aspects. J. Appl. Meteor. Climatol., 27, 414426, https://doi.org/10.1175/1520-0450(1988)027<0400:MFSAWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, K., B. Christy, G. O’Leary, P. Riffkin, and J. Nuttall, 2015: Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crops Res., 171, 109119, https://doi.org/10.1016/j.fcr.2014.11.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 18931910, https://doi.org/10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crimp, S., D. Gobbett, P. Kokic, U. Nidumolu, M. Howden, and N. Nicholls, 2016: Recent seasonal and long-term changes in southern Australian frost occurrence. Climatic Change, 139, 115128, https://doi.org/10.1007/s10584-016-1763-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldstein, S., and U. Dayan, 2008: Circumglobal teleconnections and wave packets associated with Israeli winter precipitation. Quart. J. Roy. Meteor. Soc., 134, 455467, https://doi.org/10.1002/qj.225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flohr, B., J. Hunt, J. Kirkegaard, and J. Evans, 2017: Water and temperature stress define the optimal flowering period for wheat in south-eastern Australia. Field Crops Res., 209, 108119, https://doi.org/10.1016/j.fcr.2017.04.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., T. O’Kane, D. Monselesan, J. Risbey, and I. Horenko, 2015: Systematic attribution of observed Southern Hemisphere circulation trends to external forcing and internal variability. Nonlinear Processes Geophys., 22, 513525, https://doi.org/10.5194/npg-22-513-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frederiks, T., J. Christopher, M. Sutherland, and A. Borrell, 2015: Post-head-emergence frost in wheat and barley: Defining the problem, assessing the damage, and identifying resistance. J. Exp. Bot., 66, 34873498, https://doi.org/10.1093/jxb/erv088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frederiksen, J., 1982: A unified three-dimensional instability theory of the onset of blocking and cyclogenesis. J. Atmos. Sci., 39, 969982, https://doi.org/10.1175/1520-0469(1982)039<0969:AUTDIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C., and N. Harnik, 2017: The non-Gaussianity and spatial asymmetry of temperature extremes relative to the storm track: The role of horizontal advection. J. Climate, 30, 445464, https://doi.org/10.1175/JCLI-D-15-0806.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gitelman, A., J. Risbey, R. Kass, and R. Rosen, 1997: Trends in the surface meridional temperature gradient. Geophys. Res. Lett., 24, 12431246, https://doi.org/10.1029/97GL01154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harnik, N., G. Messori, R. Caballero, and S. Feldstein, 2016: The circumglobal North American wave pattern and its relation to cold events in eastern North America. Geophys. Res. Lett., 43, 11 01511 023, https://doi.org/10.1002/2016GL070760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hovmöller, E., 1949: The trough and ridge diagram. Tellus, 1 (2), 6266, https://doi.org/10.3402/tellusa.v1i2.8498.

  • Irving, D., and I. Simmonds, 2016: A new method for identifying the Pacific South American pattern and its influence on regional climate variability. J. Climate, 29, 61096125, https://doi.org/10.1175/JCLI-D-15-0843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T., M. Tewari, D. Chakraborty, J. Marengo, P. S. Dias, and P. Satyamurty, 1999: Downstream amplification: A possible precursor to major freeze events over southeastern Brazil. Wea. Forecasting, 14, 242270, https://doi.org/10.1175/1520-0434(1999)014<0242:DAAPPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K., P. Sheu, and I. Kang, 1994: Multiscale low-frequency circulation modes in the global atmosphere. J. Atmos. Sci., 51, 11691193, https://doi.org/10.1175/1520-0469(1994)051<1169:MLFCMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 1951: Seasonal and irregular variations of the Northern Hemisphere sea-level pressure profile. J. Meteor., 8, 5259, https://doi.org/10.1175/1520-0469(1951)008<0052:SAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntosh, P., M. Pook, J. Risbey, S. Lisson, and M. Rebbeck, 2007: Seasonal climate forecasts for agriculture: Towards better understanding and value. Field Crops Res., 104, 130138, https://doi.org/10.1016/j.fcr.2007.03.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K., and M. Ghil, 1987: Statistics and dynamics of persistent anomalies. J. Atmos. Sci., 44, 877902, https://doi.org/10.1175/1520-0469(1987)044<0877:SADOPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, G., and T. Ambrizzi, 2007: Teleconnection patterns and Rossby wave propagation associated with generalized frosts over southern South America. Climate Dyn., 29, 633645, https://doi.org/10.1007/s00382-007-0253-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, G., and G. Berri, 2007: Atmospheric circulation associated with persistent generalized frosts in central-southern South America. Mon. Wea. Rev., 135, 12681289, https://doi.org/10.1175/MWR3344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, G., and G. Berri, 2012: Atmospheric circulation associated with extreme generalized frosts persistence in central-southern South America. Climate Dyn., 38, 837857, https://doi.org/10.1007/s00382-011-1113-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, G., R. Compagnucci, M. Nunez, and A. Salles, 2003: Surface circulation associated with frost in the wet Pampas. Int. J. Climatol., 23, 943961, https://doi.org/10.1002/joc.907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, G., T. Ambrizzi, and M. Nunez, 2005: Mean atmospheric circulation leading to generalized frosts in central southern South America. Theor. Appl. Climatol., 82, 95112, https://doi.org/10.1007/s00704-004-0107-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, G., T. Ambrizzi, and S. Ferraz, 2008: The role of the observed tropical convection in the generation of frost events in the southern cone of South America. Ann. Geophys., 26, 13791390, https://doi.org/10.5194/angeo-26-1379-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., 1994: Rotational evolution of potential vorticity associated with a strong blocking flow configuration over Europe. Geophys. Res. Lett., 21, 20032006, https://doi.org/10.1029/94GL01614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., M. Nakamura, and J. Anderson, 1997: The role of high- and low-frequency dynamics in blocking formation. Mon. Wea. Rev., 125, 20742093, https://doi.org/10.1175/1520-0493(1997)125<2074:TROHAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and P. Sardeshmukh, 1998: The impact of the annual cycle on the North Pacific/North American response to remote low-frequency forcing. J. Atmos. Sci., 55, 13361353, https://doi.org/10.1175/1520-0469(1998)055<1336:TIOTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G., T. Bell, and R. Cahalan, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Kane, T., J. Risbey, C. Franzke, I. Horenko, and D. Monselesan, 2013: Changes in the metastability of the midlatitude Southern Hemisphere circulation and the utility of nonstationary cluster analysis and split-flow blocking indices as diagnostic tools. J. Atmos. Sci., 70, 824842, https://doi.org/10.1175/JAS-D-12-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Kane, T., J. Risbey, D. Monselesan, I. Horenko, and C. Franzke, 2016: On the dynamics of persistent states and their secular trends in the waveguides of the Southern Hemisphere troposphere. Climate Dyn., 46, 35673597, https://doi.org/10.1007/s00382-015-2786-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Kane, T., D. Monselesan, and J. Risbey, 2017: A multiscale reexamination of the Pacific–South American pattern. Mon. Wea. Rev., 145, 379402, https://doi.org/10.1175/MWR-D-16-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perrin, G., and I. Simmonds, 1995: The origin and characteristics of cold air outbreaks over Melbourne. Aust. Meteor. Mag., 44, 4159.

    • Search Google Scholar
    • Export Citation
  • Pezza, A., and T. Ambrizzi, 2005: Dynamical conditions and synoptic tracks associated with different types of cold surge over tropical South America. Int. J. Climatol., 25, 215241, https://doi.org/10.1002/joc.1080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pook, M., J. Risbey, P. McIntosh, C. Ummenhofer, A. Marshall, and G. Meyers, 2013: The seasonal cycle of blocking and associated physical mechanisms in the Australian region and relationship with rainfall. Mon. Wea. Rev., 141, 45344553, https://doi.org/10.1175/MWR-D-13-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risbey, J., M. Pook, and P. McIntosh, 2013: Spatial trends in synoptic rainfall in southern Australia. Geophys. Res. Lett., 40, 37813785, https://doi.org/10.1002/grl.50739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risbey, J., T. O’Kane, D. Monselesan, C. Franzke, and I. Horenko, 2015: Metastability of Northern Hemisphere teleconnection modes. J. Atmos. Sci., 72, 3554, https://doi.org/10.1175/JAS-D-14-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risbey, J., P. Hayman, B. Biddulph, M. Faulkner, and M. Pook, 2017: Damaging spring frosts a result of blocking highs. Aust. Grain, March/April, 3233, http://ausgrain.com.au/Back%20Issues/266magrn17/damaging_spring_frosts.pdf.

    • Search Google Scholar
    • Export Citation
  • Risbey, J., T. O’Kane, D. Monselesan, C. Franzke, and I. Horenko, 2018: On the dynamics of austral heat waves. J. Geophys. Res. Atmos., 123, 3857, https://doi.org/10.1002/2017JD027222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D., W. Bracken, and L. Bosart, 1998: Planetary- and synoptic-scale signatures associated with Central American cold surges. Mon. Wea. Rev., 126, 527, https://doi.org/10.1175/1520-0493(1998)126<0005:PASSSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and T. Richter, 2000: Synoptic comparison of cold events in winter and summer in Melbourne and Perth. Theor. Appl. Climatol., 67, 1932, https://doi.org/10.1007/s007040070013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and H. Rashid, 2001: An investigation of a dramatic cold outbreak over southeast Australia. Aust. Meteor. Mag., 50, 249261.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 1997: A formulation of a wave-activity flux for stationary Rossby waves on a zonally varying basic flow. Geophys. Res. Lett., 24, 29852988, https://doi.org/10.1029/97GL03094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamarin-Brodsky, T., K. Hodges, B. Hoskins, and T. Shepherd, 2019: A dynamical perspective on atmospheric temperature variability and its response to climate change. J. Climate, 32, 17071724, https://doi.org/10.1175/JCLI-D-18-0462.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., and G. Branstator, 2017: Causes of extreme ridges that induce California droughts. J. Climate, 30, 14771492, https://doi.org/10.1175/JCLI-D-16-0524.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., G. Branstator, H. Wang, G. Meehl, and W. Washington, 2013: Probability of US heat waves affected by a subseasonal planetary wave pattern. Nat. Geosci., 6, 10561061, https://doi.org/10.1038/ngeo1988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D., and J. Wallace, 1998: The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, https://doi.org/10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, https://doi.org/10.1126/science.1069270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tozer, C., J. Risbey, T. O’Kane, D. Monselesan, and M. Pook, 2018: The relationship between wave trains in the Southern Hemisphere storm track and rainfall extremes over Tasmania. Mon. Wea. Rev., 146, 42014230, https://doi.org/10.1175/MWR-D-18-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trewin, B., 2013: A daily homogenised temperature dataset for Australia. Int. J. Climatol., 33, 15101529, https://doi.org/10.1002/joc.3530.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Z., R. Black, and Y. Deng, 2019: Planetary and synoptic-scale dynamic control of extreme cold wave patterns over the United States. Climate Dyn., https://doi.org/10.1007/s00382-019-04683-7, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, B., S. Chapman, J. Christopher, T. Frederiks, and K. Chenu, 2015: Frost trends and their estimated impact on yield in the Australian wheatbelt. J. Exp. Bot., 66, 36113623, https://doi.org/10.1093/jxb/erv163.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1966 1370 104
PDF Downloads 652 112 9